2024年6月5日 JICE研究開発助成成果報告会

階層ベイズによる既存橋梁の耐震性能評価 モデル構築に関する研究

2022年度 助成受付番号 第22011号 研究課題番号(⑪)

東京大学大学院工学系研究科 助教 北原優

研究の背景

免震橋の普及

- ゴム支承が橋脚に作用する地震荷重を低減
- 長期使用による**経年劣化**が顕在化
- 実橋から取得したゴム支承の載荷試験 (林ら, 2015)
 - ▶ ゴムの硬化による水平剛性の増加
 - ▶ 鉛プラグが負担できるせん断力の低下

供用環境下で支承の劣化を定量的に 評価したい

■ 地震時の加速度応答データを活用

東北地方太平洋沖地震での ゴム支承の破断(利府高架橋)

非線形システム同定

順解析 vs. 逆解析

- 観測データを再現するパラメータを推定
- モデル化誤差や計測誤差が推定に影響

ベイズモデル更新

- 推定の誤差を確率分布でモデル化
 - $y = \mathcal{M}(x) + \varepsilon, \ \varepsilon \sim f_{\varepsilon}(\varepsilon)$
- ベイズの定理
 f'(x|y) ∝ L(y|x)f(x)
 事前分布
 尤度関数

地震応答を用いたベイズモデル更新

北原ら(2021)

- 免震橋脚の質点系モデルの更新
- 観測:上部構造の加速度時刻歴

■ 橋脚ごとに支承の劣化度が異なることも!

本研究課題で取り扱う問題

- 「橋の動的耐震設計」(土木学会, 2003)の
 5径間連続免震橋
- 2次元有限要素(FE)モデルでモデル化

平均:剛性は1.2倍,降伏荷重は0.5倍
 変動係数:1.2倍

全橋モデルのベイズ更新

- 入力:レベル2地震動||-|-1
- 観測: P1~P4上の上部構造の加速度時刻歴

事前分布

[0,2]の一様分布(無情報事前分布)

尤度関数

$$\mathcal{L}(y|x) = \prod_{i=1}^{4} \prod_{t=1}^{T} \frac{1}{\sqrt{2\pi\sigma_{y_i}^2}} \exp\left[-\frac{\left(y_i^o(t) - y_i^p(x,t)\right)^2}{2\sigma_{y_i}^2}\right]$$

- $\sigma_{y_i}^2$:加速度時刻歴 y_i の標本分散
- 時間ステップごとや橋脚ごとの相関は無視

事後分布からのサンプリング

- TMCMCにより事後分布から500サンプル取得
- 逐次MCSの一種

 $f^{(j)}(x|y) \propto \mathcal{L}(y|x)^{\beta_j} f(x), 0 \le \beta_j \le 1$

- $\beta_j = 0$: 事前分布, $\beta_j = 1$: 事後分布
- 1. 事前分布からn点サンプリング
- 2. 尤度が高い数点から複数の短いマルコフ連鎖を生成
- 3. 中間分布からn点サンプリング
- 4. 2→3を繰り替えし最終的に事後分布に到達

全橋モデルの更新結果

- 事前分布に基づくモデル予測
 $\mathbb{E}[\mathcal{M}(x)] = \int \mathcal{M}(x) f(x) dx$
- 事後分布に基づくモデル予測
 $\mathbb{E}[\mathcal{M}(x|y)] = \int \mathcal{M}(x) f'(x|y) dx$

	二乗平方根誤差	最大値の相対誤差
事前分布	0.37	5.88 %
事後分布	0.06	0.20 %

■ 支承の劣化をデータから定量化できた?

全橋モデルの更新結果(つづき)

正解値は事後分布のμ ± 2σの範囲に収まる

		推定誤差	$\mu \pm \sigma$	$\mu \pm 2\sigma$
降伏後剛性	P1	22.5 %	×	0
	P2	-20.1 %	0	0
	Р3	- <mark>24.5</mark> %	×	0
	P4	9.8 %	0	0
降伏荷重	P1	0.8 %	0	0
	P2	-6.1 %	0	0
	P3	<mark>33.9</mark> %	×	0
	P4	-16.4 %	×	0

階層ベイズモデル

ベイズモデル更新

推定の誤差を確率分布でモデル化
 $y = \mathcal{M}(x) + \varepsilon, \ \varepsilon \sim f_{\varepsilon}(\varepsilon)$ $f'(x|y) \propto \mathcal{L}(y|x)f(x)$

階層ベイズモデル更新

- パラメータの変動を確率分布でモデル化
 $y = \mathcal{M}(x|\theta), x \sim f_x(x; \theta)$
- ベイズの定理

 $f'(\theta|y) \propto \mathcal{L}(y|\theta)f(\theta)$ $f_x(x|y) = \int f_x(x;\theta) f'(\theta|y) d\theta$

橋脚モデルの階層ベイズ更新

■ 支承のパラメータに正規分布を仮定

事前分布

- 平均:[0,2]の一様分布
- 標準偏差:[0,0.2]の一様分布

尤度関数

$$\mathcal{L}(y|\theta) = \prod_{i=1}^{4} \prod_{t=1}^{T} f(y_i^o(t)|\theta)$$

- *f*(·|θ):入力xの分布を伝播した出力yの分布
- 分布間の統計的距離に基づく近似尤度で代替 (Kitahara et al., 2021)

橋脚モデルの階層更新結果

- 事前分布に基づくパラメータの確率分布 $f_x(x|\theta) = \int f_x(x;\theta) f(\theta) d\theta$
- 事後分布に基づくパラメータの確率分布 $f_x(x|\theta, y) = \int f_x(x; \theta) f'(\theta|y) d\theta$

		推定誤差	
		平均	標準偏差
事前分布	降伏後剛性	-17.7 %	-25.1 %
	降伏荷重	107.2 %	21.4 %
事後分布	降伏後剛性	-1.7 %	-13.9 %
	降伏荷重	16.4 %	- 14.3 %

橋脚モデルの階層更新結果(つづき)

- 事前分布に基づくモデル予測
 $\mathbb{E}[\mathcal{M}(x|\theta)] = \int \mathcal{M}(x) f_x(x|\theta) dx$
- 事後分布に基づくモデル予測 $\mathbb{E}[\mathcal{M}(x|\theta, y)] = \int \mathcal{M}(x) f_x(x|\theta, y) dx$

	二乗平方根誤差	最大値の相対誤差
事前分布	0.74	9.70 %
事後分布	0.39	5.47 %

結論

- ゴム支承の劣化が進行した免震橋
 のモデル更新
- 全橋モデル+ベイズ更新では、支承の劣化度の評価が不正確
- 橋脚モデル+階層ベイズ更新では, 劣化度を確率分布で推定

	ベイズ更新	階層ベイズ更新
橋脚モデル (質点系)	計算時間:◎ 事後推定:◎ パラメータの変動:×	計算時間:∆ 事後推定:○ パラメータの変動:◎
全橋モデル (FE)	計算時間: <u>△</u> 事後推定: ○ パラメータの変動: △	

今後の課題

- 橋脚FEモデルの階層ベイズ更新
- 橋脚天端の観測に基づく検証
- 効率的なサンプリング手法の開発