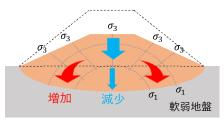
第21 回 J I C E 研究開発助成成果報告会(2021年5月27日(木)10:00~15:30)

軟弱地盤上の河川堤防内 の液状化抵抗に関する 実験的研究

京都大学 工学研究科 PIPATPONGSA Thirapong 准教授

KYOTO UNIVERSITY

国土技術研究センター(第21回)研究開発助成 重点研究課題 番号(5) 助成番号 第19003号


1

本研究の背景と目的

従来:河川堤防の地震被害の主要因は**基礎地盤の液状化**

非液状化地盤上でも河川堤防の液状化被害が多く確認

河川堤防内部の液状化が注目を集める

アーチ効果の模式図

崩壊 液状化 軟弱地盤

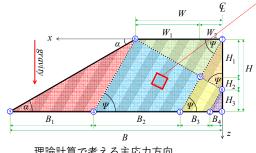
地震動による液状化発生の模式図

河川堤防中央底部の鉛直応力が低下、 その周辺部の鉛直応力が増加

地震動により液状化が発生し、 河川堤防の崩壊を招く危険性が高い

上記を考慮した設計、既設堤防では液状化の発生を予測し対策を実施

KYOTO UNIVERSITY


盛土内応力の理論計算

・Mohr応力円から得られる堤防下部の最大・Lame-Maxwellのつり合い式 主応力の角 $\psi = \pi/4 + \phi'/2$ で、盛土全体の主

応力軸が固定されている状況を仮定

参考) Pipatpongsa & Takeyama (2010)

・対称性から右半分も同様に計算可能

理論計算で考える主応力方向

 $_H$ ξ 方向のつり合い式


 $(\sigma_1 + \delta \sigma_1)\delta \eta - \sigma_1 \delta \eta = \gamma \delta \eta \delta \xi \sin \psi$

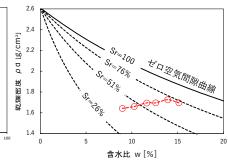
η方向のつり合い式

 $(\sigma_3 + \delta \sigma_3)\delta \xi - \sigma_3 \delta \xi = \gamma \delta \eta \delta \xi \cos \psi$

KYOTO UNIVERSITY

3

粒径加積曲線

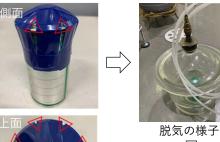

通過重量百分率 [%] 。.. 粒径 [mm]

使用した広島砂は

特に液状化の可能性ありに分類

参考)国交省:湾港の施設の技術上の基準

締固め曲線


 $\omega_{opt}=13.90~(\%)$

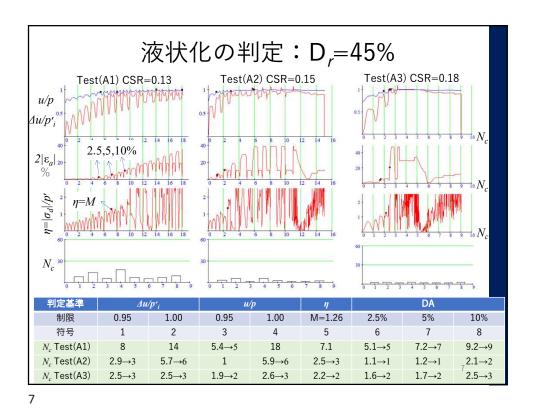
 $\rho_{dmax} = 1.72 \text{ (g/cm}^3)$

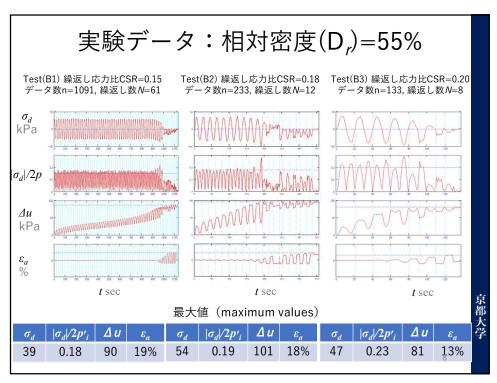
KYOTO UNIVERSITY

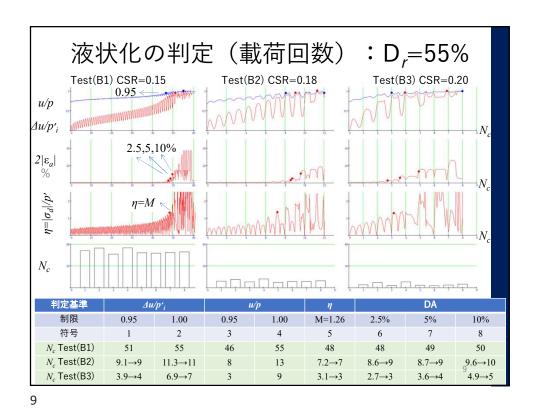
- 遠心模型実験で採用している相対密度 Dr=55%で試験を実施
- Drによる液状化強度を比較するため、Dr=65%と45%でも試験を実施

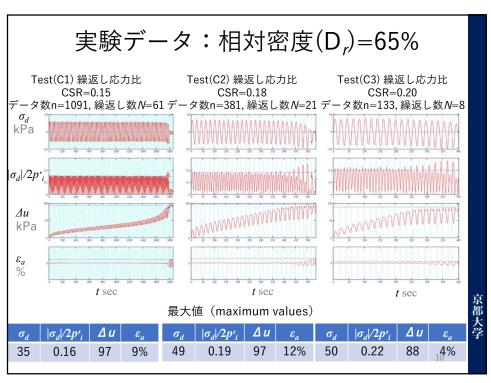
供試体の質量一定後、冷凍
△:通気口

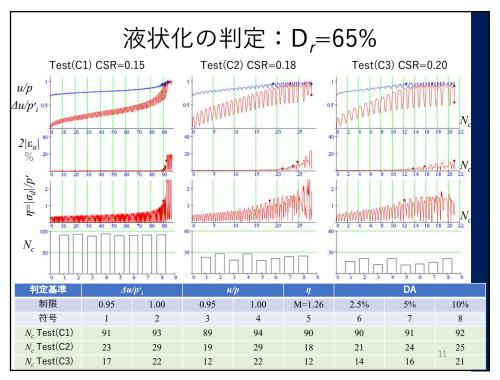
サミットモールド KYOTO UNIVERSITY

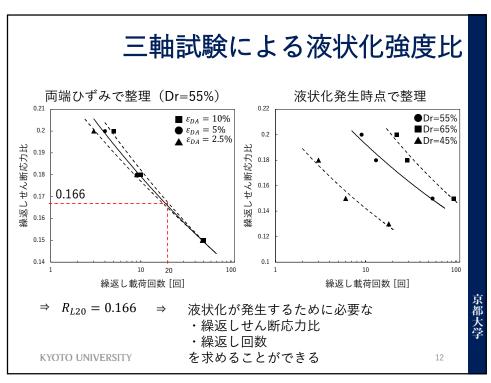


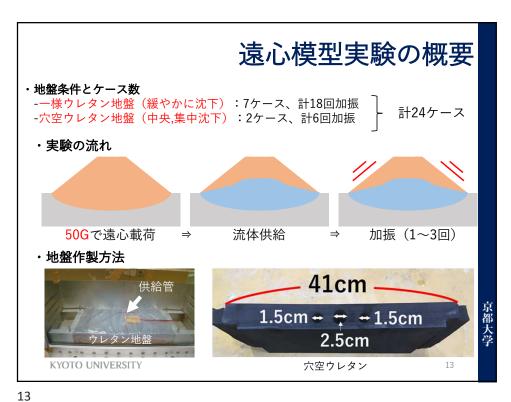

三軸試験機


5


5


実験データ:相対密度 $(D_r)=45\%$ Test(A1) 繰返し応力比CSR=0.13 Test(A2) 繰返し応力比CSR=0.15 Test(A3) 繰返し応力比CSR=0.18 データ数n=344, 繰返し数*N*=18 データ数n=422, 繰返し数*N*=15 データ数n=422, 繰返し数N=9 σ_d kPa 100 150 200 250 300 350 40 $|\sigma_d|/2p'_i$ ∆u kPa 100 150 200 250 300 350 400 ε_a % 50,18100 150 200 250 300 350 400 0 50 50 15 100 150 200 250 300 350 400 最大値(maximum values) $t \sec$ t sec $|\sigma_d|/2p_i$ Δu Δu $|\sigma_d|/2p'_i$ $|\sigma_d|/2p'_i$ 86 18% 0.18 26 0.16 77 19% 0.21 88 24% KYOTO UNIVERSITY

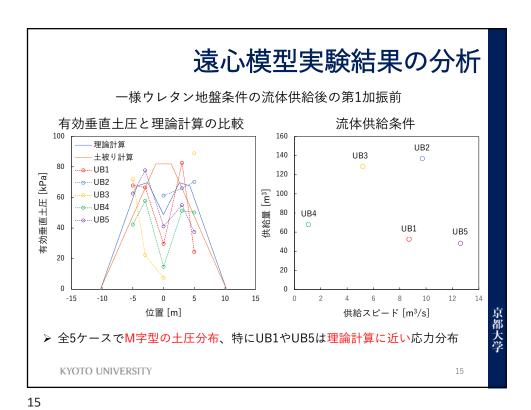


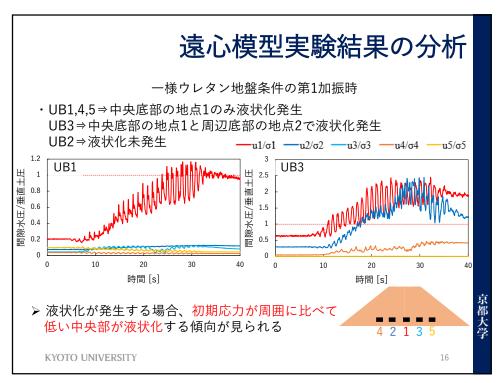


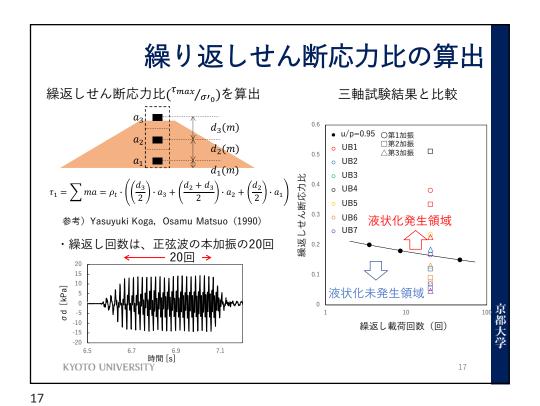
10

遠心模型実験の実験条件

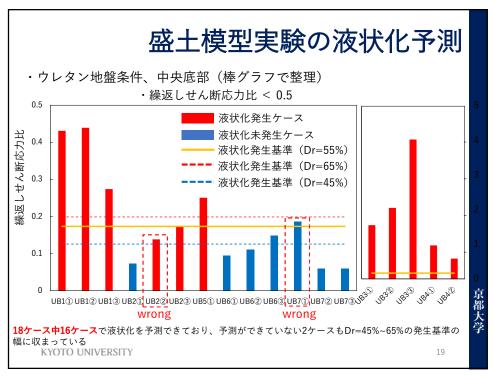
地盤条件	流体供給	ケース	加振	供給量[m³]	供給速度[m³/s]
一様ウレタン	中央底部	UB1	3回	52.57	8.71
		UB2	3回	136.81	9.72
		UB3	3回	128.51	5.2
		UB4	2回	67.78	1.07
		UB5	1回	48.29	12.61
	側方底部	UB6	3回	138.24	12.83
		UB7	3回	45.43	7.24
穴空ウレタン	中央底部	UH1	3回	79.81	13.63
		UH2	3回	103.67	1.11




遠心載荷前のウレタン 地盤上の盛土


遠心載荷⇒流体供給⇒加振の過程で、中央底部の垂直土圧が 周辺底部に比べて小さいM字型の土圧分布を示すケース


KYOTO UNIVERSITY


14

19

結論と今後の課題

- 1. 非排水繰返し三軸試験では、繰返し脱気後冷凍した供試体を使用することで飽和度が100%近くまで上昇する.
- 2. 堤体内に水位を有し一様に沈下する軟弱地盤上の盛土は、盛土底部の垂直土圧の把握に理論計算が適用できる.
- 3. 非排水繰り返し三軸試験の結果を用いて、軟弱地盤上の 盛土底部の液状化発生を予測できる可能性がある.
- 4. 室内試験を用いた簡易液状化予測の妥当性検証
- 5. 様々な繰返し回数、加速度で遠心模型実験を実施
- 6. より正確に加速度からせん断応力を算出する手法の提案

京都大学

KYOTO UNIVERSITY

20