積雪道路におけるインフラライトな レーン誘導システムに関する研究

(元) 秋田県立大学 教授 御室 哲志

概要:

本研究は、道路側にスノーポール以外の特別なインフラ設備を必要とせず、路肩が雪に覆われた状態で も運転者に正確な前方道路端位置を提示する運転支援システムを開発することを目的とする.ここで主要 な車載センサとして用いるレーザスキャナは、距離精度と角度分解能が高いという利点があるが、近赤外 光を使用しているため、悪天候下の動作は必ずしも保証されていない.その高性能なものは、近年、自動 運転システムの中核センサとしてよく用いられている.

昨年度は、様々な冬期悪天候下においてもスノーポールの検出が可能であることを示すとともに、道路 左端ポールの位置情報からなる地図の生成方法と、その地図を用いてリアルタイムでレーン誘導するシス テムの構成を示した.今年度は、新たに四つの技術課題について取組み、更に実用性の高いレベルで、<u>社</u> 会ニーズに合致した新たな技術の提案を行う.

キーワード: 積雪道路, 悪天候, レーン誘導システム, レーザスキャナ, スノーポール

1. 研究の背景と提案システムの概要

(1) 積雪地域における道路交通障害と従来の対策

今まで雪の無かった道路に降雪が始まると,先ず視界 が悪化し,風景はモノトーンとなり,道路境界が判別し づらくなる.積雪量が増すと,除雪車が出動して走行路 を確保するが,除雪された雪は,多くの場合,路肩に寄 せられて,路側帯,縁石,ガードレールなどの路肩構造 物を覆う.地吹雪を伴うような悪天候下では,視界を完 全に奪うホワイトアウトに至ることもある.円滑・安全 な交通確保の点では前方100mの道路線形が視認できる ことが必要と言われている¹⁾.道路,自動車の双方で様々 な対策がされてきているが,いまだ不十分である.

(2) 提案システムの概要と研究課題

道路インフラを仮定したレーン誘導については種々の アプローチがある.本研究は、特別なインフラ設備を必 要とせず、悪天候下で路肩が雪に覆われた状態でもドラ イバに正確な前方道路端位置を提示する運転支援システ ムを開発することを最終目的とする.ここで主要な車載 センサとして用いるレーザスキャナは、距離精度と角度 分解能が高いという利点があるが、近赤外光を使用して いるため、悪天候下の動作は必ずしも保証されていない. その高性能なものは、近年、自動運転システムの中核セ ンサとしてよく用いられている.今回用いる4レイヤレ ーザスキャナは、低コスト化が十分見込めるセンサで、 現在普及が進んでいる通常の運転支援システムも含め、 幅広く適用が可能と考えている.

道路側にはドライバの視覚支援に用いられている通常の スノーポールのみを仮定する.雪が堆積した状態でも, スノーポールの上部は視認可能であり,適切な間隔で路 側に設置されているものする.雪が堆積していない状態 で走行した時のレーザスキャナ出力から,スノーポール の位置を抽出し,デジタル地図を生成する.雪によって 路肩構造物が覆われ,ドライバとしては道路端の判別が 困難になった状況下において,スノーポールを検出する ことにより,道路端位置を推定して車両をレーン誘導す る.道路端位置推定精度が高ければ,除雪作業支援にも 適用可能と考えられる.

昨年度は、レーザスキャナによる悪天候下のスノーポ ールの検出可能性を確認し、スノーポールの位置把握に 基づくレーン誘導システムの全体構成を示した³. 今年 度は、2、3、4、5章に示す四つの課題について取り 組み、より実用化に近づけた高いレベルでシステム提案 を行う.

発表8

2. 積雪高に対応したレーザスキャナの車両搭載

(1) フロントレーザスキャナの搭載

表1に今回使用する4レイヤのレーザスキャナ(SICK LD-MRS, IBEO LUX2010 同等品)の諸元を示す.図1 に車両搭載時の側面視の4レイヤのイメージを示す,下 から第1,第2レイヤと呼び,分かり易く赤青緑黄の4 色で色分けしている.以下では各レイヤに属する反射点 をこの4色で示す.昨年度はLowポジション(路面から 0.415m)に取り付けたが,手前の雪壁に遮られて,スノ ーポールを見落とすことがあった.今年度は想定積雪高 を最大1.5m と考え,それより高いHigh ポジション

(1.79m) にレーザスキャナを取り付け,雪壁等による オクルージョンを低減した.このレイアウトにより,第 3,4 レイヤの反射点の横ずれが 10cm 以内であるペアを スノーポール候補とするシンプルなロジックが,安定的 に適用可能となる.

表1 レーザスキャナの仕様, SICK LD-MRS

Size(W×H×D)	164.5mm×88mm×93.2mm
Laser class and wave length	Class 1, 905nm
Range	200m/50m(10% remission)
Horizontal field of view	85deg(+35deg~-50deg)
Vertical field of view	3.2deg, 4layers
Scan interval	40ms
Multi-echo function	Up to three echoes
Power supply, Consumption	9~27V DC, Typ. 8W

図1 フロントレーザスキャナレイアウトと積雪高

表 2 レーザスキャナの仕様, SICK LMS111-10100

Size(W×H×D)	105 mm x 102 mm x 162 mm
Laser class and wave length	Class 1, 905nm
Range	20m/18m(10% remission)
Field of view	270deg
Angular resolution	0.25deg/0.5deg
Scan interval	40ms/20ms
Multi-echo function	Up to two echoes
Power supply, Consumption	10.8~30V DC, Typ. 8W

図2 リヤレーザスキャナレイアウト (後面視)

(2) リヤレーザスキャナの搭載

表2に道路横断面計測用に今回使用する2Dレーザス キャナ(SICK LMS111-10100)の諸元を示す. 屋外使用 前提であり、マルチエコー機能として1ビーム当り反射 点を2個まで計測する. 図2にリヤレーザスキャナの試 験車両への搭載レイアウトを示す. レーザスキャナは、 車両後端に路面から1.7mの高さで取り付けられており、 真上90°は視野範囲外である.

3. 悪天候下のスノーポールの計測精度と検出率

(1) 悪天候下のスノーポールの計測精度

図3上に示すように、車両は道路左端のスノーポール P₁, P₂を左に見つつ、約30km/hで走行し、レーザ反射 データからポール間距離を算出する.両ポールの設置間 隔は19.94mである.図3下に各天候下でのポール間隔 を箱ひげ図で示す.用いたデータは曇り、あられ強と吹 雪中、強の4種である.各天候内で距離データが平均値 から±5cm以内に入っており、計測精度は十分に高い.

cloudy (Dec. 17, 2018)

heavy hail (Dec. 16, 2016)

図3 天候別のP1-P2間距離の計測精度3)

(2) 悪天候下のスノーポールの検出率の悪化

昨年度の結果より、レーザスキャナから8m以上離れれば、悪天候下でもスノーポールを検出できる可能性がある。しかしながら天候が悪くなるほど、検出しにくくなることは間違いない.図3のP1の反射データを使って、4つの天候下の検出率を調べたのが図4左の4本のバーグラフである。ここで検出率とは、当該データの内、P1ポール位置を正しく検出したスキャン数を全スキャン数で除したものである。曇りでは70%近い検出率を持つが、吹雪強では30%程度に落ちる。図3の吹雪強のデータ数が2しかないのは、P1とP2を同時に計測できる確率が9%程度であるためと理解できる。

(3) トラッキングによるスノーポールの認識率向上

悪天候の中でもスノーポールを検出できる可能性はあ るが、その検出率が低すぎては意味がない、それを救う 一つの強力な手段が移動物体のトラッキング処理である、 ここで言うトラッキング処理とは、レーザスキャナのあ るスキャンにおける第3,4 レイヤが捉えたポール候補に ついて、次のスキャンにおける出現位置を自車両の挙動 から計算し、その近傍で再検出した場合は、当該候補の 尤度を上げ、再検出できなかった場合は尤度を下げ、一 定の尤度を上回った場合にポールとして認識するという、 一連の手続きである.図4右は、図4左の検出データを トラッキングしてポールと認識した結果である.尤度の 計算方法のチューニングが粗い状態であるものの、検出 率に比べてトラッキングによる認識率ははるかに向上し ている.

図4 天候別 R 検出率と R 認識率³⁾

4. 道路左端ポールの誤検出と不検出への対策

(1) 道路左端ポールの抽出手法

図5にポール候補(○)とポール(●)の配置イメージ を示す.レーザスキャナから8m以遠の濃いグリーンで 示すところが検出対象エリアである.走行レーン上には 他車両以外には背の高い物体は存在しないので,この例 では自車の前方に先行車によるポール候補点があり,対 向車線には対向車によるポール候補点がある.これら動 きのある物体はトラッキング処理によってポール候補の 段階に留まる.

図6 レーザスキャナの反射点データとポール認識3)

図7 道路左側ポールと道路左端ポールの抽出3)

図6,7は構内道路で発進直後の極低速走行中のポール認 識の過程を示している.図6左は4レイヤレーザスキャ ナの反射点が4色のドットで示されている.下辺中央原 点にレーザスキャナがあり、円弧は原点を中心に10mピ ッチである.雪のない時のデータであるので、第1レイ ヤの赤色のドットが多く見られるが、その後の処理は第 3、4レイヤに限定しているので影響は無い.図6右はポ ール候補(○)を検出し、更にポール(●)を認識した 結果である.走行路両側に多くのポール(一部ポール候 補)が見られる.

図7は図6から若干時間が経過している. 図7左はポー ル(●)から道路左側ポール(●)を抽出し, 図7右は 更に道路左端ポール(●)を抽出したところである.

(2) 弾性マッチングの導入

以上の手続きにより、積雪下においても道路左端ポー ルの抽出が可能となるが、トラッキングでポール認識率 を向上したとしても、ポールの不検出や誤検出の可能性 は残る.ポールの不検出や誤検出は地図生成(図8のP) でも発生し得るが、悪天候走行時にリアルタイムで検 出・認識するポール(図8のQ)においてより多く発生 することが想定され、これらはマップマッチング時に大 きなマッチングエラーを引き起こす.図8では地図は完 全であるとし、Q3とQ4の間でリアルタイム検出側に1 回の不検出があった状態を例示している.

不検出・誤検出に伴う大きなマッチングエラーを避け, P_i 列と Q_j 列の最適な対応を得るために、いわゆる弾性 マッチング $j=u_i$ を導入する.ここでu は"warping function" と呼ばれる.ポール P_i をポール Q_j に対応付けた場合のコ スト関数をd(j)とすると、 u_i と i_{START} に依存するマッチン グコスト関数Fに関する最適化問題は次式で表される.

minimize
$$F = \sum_{i=i_{START}}^{i_{MAX}-1} d_i(u_i)$$
(1)

ここで u_1, u_2, \cdots は、図9のトレリスで表現されるルートに対応する. $i_{START}: マッチングを開始する地図のポール番号$

地図の P_i 情報が完全であると考えた場合, 図9の三 つの勾配値 2, 1, 1/2 はそれぞれ Q_j の誤検知(false positive in detection), 正検知, 不検知(false negative in detection)に対応し, 記号D,S,H で表すことにする.

勾配が1の時のコスト関数 $d_{(u_i)}$ は (2) 式で与えられる. ここでベクトル p_i は、局所的な特徴量を持たせるため(局所的なポール配置の一致度を重視し、遠方まで行った時の累積的な誤差は重視しない)、一つ前のベクトル p_{i1} の方向を基底とした成分で定義する(図8の $p_{1}, p_2 を$ 参照). ベクトル q_i も同様に定義する.

$$\boldsymbol{d}_{i}(\boldsymbol{u}_{i}) = \left\| \boldsymbol{p}_{i} - \boldsymbol{q}_{\boldsymbol{u}_{i}} \right\|^{2}$$
(2)

Pi 列の数 imax やQi列の数 jmax が大きいとマッチン グに要する計算量が増大するので、本システムでは imax は 21 以内(地図は一般に非常に多くのポール情報を持 つので、マッチングを実行している近傍の最大21本を都 度抽出する)、 jmax は8 以内とした. 図9 はこの最大値で 描かれている. jmax が8 でルートの勾配がすべて1の場 合、記号"SSSSSSS"で表すことにする. これは図9 で座 標(istart, 0) からスタートする常に勾配1のルート(7本 の黒矢印で表される)に相当する. D,H はそれぞれ最大 3 回まで使用できるという制限をつけると、全ルート数 は 308 となり、図9 の(istart, 0)から発し、zero cost path に 至る連続した7つの矢印からなるルートとして、トレリ ス上にすべて表現されている.

(3) 弾性マッチングによる自己位置推定例

以上の弾性マッチングの適用状況を,実際の走行デー タの例で示す.図10は半径50mのコーナーを含む構内 道路のスノーポール配置である.車両はP₁の手前から発 進して,スノーポール列を左に見ながら約30kmhで走 行する.赤点は測量で得られた全21本(P₁~P₂₁)のス ノーポール位置であり,+は走行時のレーザスキャナの データから得られたポール位置Q₁で,両者はカーブ内で わずかな位置ずれがあるものの,概ね一致している(測 量はグローバル座標,レーザスキャナのデータはローカ ル座標なので,P₁で両者の座標を合わせて作図している). 但し,レーザスキャナではP₁₃ポールが不検出であった.

 P_i 列としては図 10 の測量データ全 21 本をとり、 Q_j 列としては P_{10} をレーザスキャナで計測したものを Q_1 として以降の 8 本 $(Q_1, Q_2, Q_3, Q_4, ..., Q_8)$ をとり、 i_{START} を1から順に増やしながら全 308 ルートのマッチングコスト Fを求めた.図 11 は横軸に i_{START} をとり、縦軸に Fを とり、308 ルートから 8 つのルート("HSSSSSS"、 "SHSSSSS"、"SSHSSSS"、"SSSHSSS"、"SSSSHSS"、 "SSSSSHS"、"SSSSSSH"、"SSSSSSS"))を選んでカーブで 表した.最小の F は、"SSHSSSS"の i_{START} =10 で得られ ており、これは P_{13} が不検知であることに対応している. 言い換えれば、 P_{13} を意図的に飛ばして((S: P_{10} - P_{11})、(S: P_{11} - P_{12})、(H: P_{12} - P_{14})、、)両者のマッチングを取ってい る. 当然ながら全 308 ルートの中でも最小となる.

以上の弾性マッチングの導入により、悪天候時あるい はスノーポールの異常といった悪条件下でも、*Pi* 列と*Q*_i列の間の正しい対応関係が得られ、システムのロ バスト性が向上する.

5. 積雪道路の横断形状の計測

本レーン誘導システムの開発においては,積雪寒冷地 の高速道路,国道,地方道に一般的に見られる中央分離

図10スノーポールの測量位置と計測位置3)

帯がある片側2車線道路の左レーン走行,もしくは片側 1車線+路肩スペース,もしくは中央分離帯の無い片側1 車線を走行している状態を想定している.道路横断形状 計測においても,同様の道路を想定する.図12,13 はい ずれも福島県内の積雪道路(路面上の雪は融けている) で計測した事例である.図12 は極低速走行中に計測した 横断面形状とその近傍の道路画像である.横軸は計測車 の中心からの左右の座標(mm)で,車両概略サイズを長方 形で示している.リヤレーザスキャナは車両のルーフ後 端にあり,路肩の雪の高さや形状が精度良く取れている ことが分かる.角度分解能は0.25°であるので,約3m 左の路肩の雪壁は,高さ方向に約13mmの分解能を持つ.

図13 は約 50kmh の通常走行でトンネルに進入した時 のトンネル内の横断面形状である.レーザスキャナの視 野角は270°で天井側の90°を除いた範囲のトンネル壁 面からの反射が得られている.連続データを動画と比較 すると,走行中でも高い応答性で計測できていることが 分かる.スキャン周期は40msであるので,進行方向に 数十 cm 間隔で横断面形状を得ていることになる.一般 道の縁石の出入りが多い箇所では,走行速度を20kmh 程度にすれば,横断面形状の間隔も20cm 程度になるの で,このスキャン周期で除雪支援の実用性は十分あると 考える.

図13 トンネル走行時の計測例(約50km/h 走行時) (2018年12月裏磐梯,降雪なし)

6. まとめと今後の課題

本研究では、積雪悪天候下で道路横位置が確認しづら い時の自己位置推定手法ならびにレーン誘導手法を具体 化し、その実験システムを構築した.主要センサとして、 普及が容易な4レイヤレーザスキャナを用い、想定積雪 高より背の高いスノーポール類の位置を検出してランド マークとする.積雪時に雪の上に突き出ているスノーポ ールを検出して、ランドマーク地図とのマッチングによ り、雪に埋もれた道路端位置を推定することができる.

本研究の結論としては、

- 冬期の様々な気象条件下においても、マルチエコー 機能付きレーザスキャナを用いると、8m 以遠のス ノーポール類の位置検出が可能である.
- (2) レーザスキャナ反射点から道路左端ポールの地図を 生成するシステムの構成を示した.また、走行区間 の地図を事前に入手することによりレーン誘導を行 うシステムの構成を示した.
- (3) 想定積雪高より高い位置にレーザスキャナを取付けることにより、レーザビームが車両近傍の雪壁や他車両に遮られること(オクルージョン)を低減し、スノーポールの検出をより確実にした.
- (4) 悪天候下ではスノーポールの検出率が低下するが、 トラッキング処理を施すことで、認識率が大幅に向 上する. 位置計測精度については問題ない.
- (5) 道路左端ポールの抽出アルゴリズムを具体化し、実 データで動作を検証した.また道路左端ポールに不 検出や誤検出があった場合でもマッチングが悪化し ないように、弾性マッチングを導入した.
- (6) 2D レーザスキャナを搭載して道路横断面計測を行った.横断面のデータは良好で走行しながらの計測 も実用範囲であることが分かった.

以上により、2年にわたって研究を行った「積雪道路 におけるインフラライトなレーン誘導システム」は、降 積雪地域の道路ユーザにより安全で安定した冬季道路交 通手段を提供できる一定の目途を得て、社会ニーズに合 致した新たな技術の提案を行えたと考える.

謝辞:終わりに、リアルタイムソフトウェアの開発にあ たってアドバイスやご協力を頂いた木村健二氏、計測や システム構築に尽力頂いた谷口直也氏、羽田野航介氏に 感謝の意を表する.また研究助成をいただいた国土技術 センターの関係各位に御礼申し上げる.

参考文献

1)国立研究開発法人土木研究所 寒地土木研究所 寒地道路研 究グループ 雪氷チーム,道路吹雪対策マニュアル 第4編その 他の吹雪対策施設編,平成23年3月.

2) 谷口直也, 御室哲志, 4 レイヤレーザスキャナを用いた積雪 道路のスノーポールの検出, 自動車技術会論文集 Vol.49, No.2, pp. 341-346 (2018).

3) T. Mimuro, N. Taniguchi, H. Takanashi, Concept Study of a Self-localization System for Snow-covered Roads Using a Four-layer Laser Scanner, Automotive Innovation, Springer (2019), (To be published).