ドレーン工設計・施工に関する参考資料
（技術資料）

平成25年7月

一般財団法人 国土技術研究センター
ドレーン工設計・施工に関する参考資料（技術資料）

目 次

資料 1 実物大堤防実験によるドレーン工の効果の検証事例 .. 1
 1.1 江戸川における浸透実験 .. 1
 1.2 筑後川における浸透実験 .. 5
資料 2 ドレーン工の施工事例 .. 8
 2.1 ドレーン工設計マニュアル H10.3.31 以前の施工事例 8
 2.1.1 利根川における施工事例 ... 8
 2.1.2 境川における施工事例 ... 10
 2.2 ドレーン工設計マニュアル H10.3.31 以後の施工事例 ... 13
 2.2.1 吉田川における施工事例 ... 13
 2.2.2 利根川における施工事例 ... 14
 2.2.3 矢作川における施工事例 ... 15
 2.2.4 木曽川における施工事例 ... 16
 2.2.5 木津川における施工事例 ... 17
 2.2.6 旭川における施工事例 ... 18
資料 3 ドレーン工効果確認のためのモニタリング例 ... 19
 3.1 ドレーン工効果確認のための計測機器によるモニタリング手法 .. 19
 3.2 モニタリング事例 .. 21
資料 4 フィルター材料の試験方法 ... 23
 4.1 日本及び諸外国におけるジオテキスタイルの適用基準 ... 23
 4.2 ドレーンのフィルター材料について .. 24
資料1 実物大堤防実験によるドレーン工の効果の検証事例

1.1 江戸川における浸透実験

(1) 実験堤防の概要
a) 全面ドレーン

b) 縦・横ドレーン

図-資1.3 ドレーン工の構造
(2) 実験の結果

【実験外力】

a) 長期湛水実験

【実験外力】

b) 降雨＋湛水実験

図-資 1.4 実験結果その1（ドレーン工がない場合）

【実験外力】

a) 全面ドレーン工

【横ドレーンの中間】

b) 縦・横ドレーン工

図-資 1.5 実験結果その2（ドレーン工がある場合）
(3) 浸透流計算結果と実験結果の比較

a) 計算モデル

b) 降雨+湛水実験（ドレーン工がない場合）

c) 降雨+湛水実験（ドレーン工がある場合）

図-資 1.6 実験結果
1.2 筑後川における浸透実験

(1) 実験堤防の概要

図-資 1.7 実験堤防平面図

図-資 1.8 実験堤防の基本形状

図-資 1.9 実験堤防の基礎地盤状況
a) 全面ドレーン堤

b) 縦・ドレーン堤

c) 無対策堤

図-資1.10 ドレーン工の構造

(2)実験の外力

図-資1.11 [降雨＋湛水実験]の外力
(3) 実験の結果

図-資1.12 降雨+湛水実験の結果
資料2 ドレーン工の施工事例

2.1 ドレーン工設計マニュアル H10.3.31 以前の施工事例

2.1.1 利根川における施工事例

（1）堤防強化の標準断面とドレーン工の構造

図-資料2.1 堤防強化標準断面図

図-資料2.2 ドレーン工詳細図
(2) ドレーン工の施工状況

敷砂利により施工性を確保し、ドレーン工が施工されている。右手の白い布状のものが吸出し防止シート。

写真-資 2.1 ドレーン工の施工状況

写真-資 2.2 堤脚水路の状況
2.1.2 境川における施工事例

(1) 堤防強化の標準断面

※土留めブロックはドレーン工、のり尻洗堀防止工、越流水の減勢工を兼ねる

図-資 2.3 堤防強化一般部標準断面図

(2) ドレーン工の施工状況

写真-資 2.3 完成直後のドレーン工の状況
(3) 越水をともなう平成5年11月出水時の状況

図-資2.4 河川水位および降雨の状況

図-資2.5 堤体内水位の状況

①～③の番号は図-資2.4の番号に対応
越水があってもかかわらず、ドレーン工を含むのり尻には、ほとんど被害は認められなかった。

写真-資 2.4 裏のり尻の状況
2.2 ドレーン工設計マニュアル H10.3.31 以后の施工事例

2.2.1 吉田川における施工事例

（1）堤防強化の標準断面とドレーン工の構造

図-資 2.6 堤防強化標準断面図

（2）ドレーン工の施工状況

写真-資 2.5 施工前

写真-資 2.6 施工後

写真-資 2.7 施工中
2.2.2 利根川における施工事例

（1）堤防強化の標準断面とドレーン工の構造

図-資 2.7 堤防強化標準断面図

図-資 2.8 ドレーン工詳細図

（2）ドレーン工の施工状況

写真-資 2.8 床堀完了

写真-資 2.9 ドレーン材料の敷設
2.2.3 矢作川における施工事例

（1）堤防強化の標準断面とドレーン工の構造

図-資 2.9 堤防強化標準断面図

（2）ドレーン工の施工状況

写真-資 2.10 フィルター砕石整形
写真-資 2.11 かごマット全景

写真-資 2.12 施工後
2.2.4 木曽川における施工事例

(1) 堤防強化の標準断面とドレーン工の構造

図-資 2.10 堤防強化標準断面図及び、ドレーン工詳細図

(2) ドレーン工の施工状況

写真-資 2.13 施工中

写真-資 2.14 施工中

写真-資 2.15 施工中

写真-資 2.16 施工後
2.2.5 木津川における施工事例

(1) 堤防強化の標準断面とドレーン工の構造

図-資 2.11 堤防強化標準断面図

図-資 2.12 ドレーン工詳細図

(2) ドレーン工の施工状況

写真-資 2.17 かごマット設置

写真-資 2.18 ドレーン材料の敷設
2.2.6 旭川における施工事例
(1) 堤防強化の標準断面とドレーン工の構造

図-資 2.13 堤防強化標準断面図

(2) ドレーン工の施工状況
3.1 ドレーン工効果確認のための計測機器によるモニタリング手法

図-資料3.1 a)は代表断面における観測施設の標準的な配置を示したもので、水位観測孔と河川水位を観測するための量水標で構成する。また、近傍に雨量の観測施設がない場合には、雨量計も併せて設置することが望ましい。なお、それ以外の断面においても、比較のため図-資料3.1 b)に示すように水位観測孔を設置しておくとよい。水位観測孔については次のような構造とする必要がある。

・ 堤体内あるいはドレーン工内を対象に設置するものについては、全体にストレーナー加工を施した直径40mm以上の管とし、図-資料3.2 a)に示すように、目詰まりや管内への土砂の流入を防止する構造とする。

図-資料3.1 観測施設の標準的な配置

・ 基礎地盤を対象とするものについては、同じく40mm以上の管とし、管底は低水位時期の地下水位以下1m程度とする。また、基礎地盤内の水位、水圧の測定を目的とするため、図-資料3.2 b)に示すように堤体内は遮水を完全にし、ストレーナーは基礎地盤のみに設ける構造とする。

- 観測の方法は、特に制約がないかぎりは自動計測とし、水位の経時変化を詳細に把握することが望ましい。手動計測の場合、観測を開始する条件は河川水位が氾濫注意水位に達した時点、あるいは連続雨量が100mmに達した時点を目安とする必要がある。自動計測の場合には出水や降雨の直後に観測記録を回収すればよい。ただし、自動計測については計器を定期的に点検し、作動状況を確認する必要がある。また、河川水位についても同時に観測する必要があるが、水位観測の自動計測システムに取り込んでおくと記録の整理に好都合である。
図-資 3.2 水位観測孔の標準的な構造
3.2 モニタリング事例

北陸地整・荒川

計測位置: 堤体 水位計8箇所（内、1箇所はドレーン内）
基礎地盤 水位計1箇所
計測方法: 電気式水位計、地下水位観測孔
断面の特徴: 筑堤履歴2回
堤体土質 砂質土・礫質土、基礎地盤土質 砂礫・砂質土
堤防高 3.5m

近畿地整・瀬田川

計測位置: 堤体 水位計5箇所
計測方法: 電気式水位計4箇所、地下水位観測孔、間隙水圧計1箇所
断面の特徴: 筑堤履歴1回
堤体土質 砂礫、基礎地盤土質 砂礫
堤防高 2.5m
近畿地整・藻川

計測位置：堤体 水位計5箇所（内、1箇所はドレーン内）
基礎地盤 水位計1箇所
計測方法：電気式水位計、地下水位観測孔
断面の特徴：築堤履歴1回
堤体土質 砂質土、粘性土、基礎地盤土質 砂質土（被覆土あり）
堤防高 3.4m

九州地整・姶良川

計測位置：堤体 水位計4箇所（内、1箇所はドレーン内）
計測方法：電気式水位計、地下水位観測孔
断面の特徴：築堤履歴3回
堤体土質 砂質土、基礎地盤土質 砂質土
堤防高 3.8m
資料4 フィルター材料の試験方法

4.1 日本及び諸外国におけるジオテキスタイルの適用基準

<table>
<thead>
<tr>
<th>方法</th>
<th>バイオリン・ダレックスに対する基準</th>
<th>下層透水性に対する基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calhoun の方法</td>
<td>a. 一方向流れ、層流</td>
<td>O₉₀ > d₁₁₀</td>
</tr>
<tr>
<td>Schoer と Teindl の方法</td>
<td>a. 一方向流れ、層流</td>
<td>O₉₀ < d₉₀, d₈₅, d₆₀, d₅₀</td>
</tr>
<tr>
<td>Ogink の方法</td>
<td>a. 一方向流れ、層流</td>
<td>c = 0.5</td>
</tr>
<tr>
<td>米工務課の方法</td>
<td>(1) 対象土が細粒分の場合</td>
<td>kₙ > 10 × kₚ</td>
</tr>
<tr>
<td></td>
<td>(2) 対象土が粗粒土の場合</td>
<td>kₙ > kₚ</td>
</tr>
<tr>
<td>米林野庁の方法</td>
<td>上記と同じただし、開口面積率 4%以下の織物は使用すべきではない。水理的条件の厳しいところに不織布は使用しない</td>
<td></td>
</tr>
<tr>
<td>FHWA の方法</td>
<td>(1) 対象土が細粒分の場合</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. 一方向流れ、層流</td>
<td>O₉₀ < d₉₀</td>
</tr>
<tr>
<td></td>
<td>b. 乱流または線形成浸透</td>
<td>O₇₅ < d₇₅</td>
</tr>
<tr>
<td></td>
<td>(2) 対象土が粗粒土または礫質土の場合</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. 一方向流れの場合</td>
<td>O₉₀ < d₉₀</td>
</tr>
<tr>
<td></td>
<td>b. 乱流または線形成浸透の場合</td>
<td>O₇₅ < d₇₅</td>
</tr>
<tr>
<td>ベルギー公共事業省の方法</td>
<td>O₉₀ < 2 × d₉₀</td>
<td></td>
</tr>
<tr>
<td>CFPQ の方法</td>
<td>(1) 対象土が細粒土の場合</td>
<td>O₉₀ < d₉₀</td>
</tr>
<tr>
<td></td>
<td>(2) 対象土が粗粒土の場合</td>
<td>O₉₀ < d₉₀ または O₉₀ > 50 μm の大きい方</td>
</tr>
<tr>
<td></td>
<td>(3) 対象土が砂質土または礫質土の場合</td>
<td>O₉₀ < d₉₀ または O₉₀ > 50 μm の小さい方</td>
</tr>
<tr>
<td>SGV の方法</td>
<td>(1) 対象土が粘粒土の場合</td>
<td>O₉₀ < d₉₀ または O₉₀ < 2 × d₉₀ の小さい方</td>
</tr>
<tr>
<td></td>
<td>(2) 対象土が細粒土の場合</td>
<td>O₉₀ < d₉₀ または O₉₀ < 2 × d₉₀ の小さい方</td>
</tr>
<tr>
<td></td>
<td>(3) 対象土が砂質土または礫質土の場合</td>
<td>O₉₀ < d₉₀ または O₉₀ < 2 × d₉₀ の小さい方</td>
</tr>
</tbody>
</table>

注

- O₉₀, O₈₅, O₆₀, O₅₀: 粒径等 |
- GR: 効率勾配比 |
- kₙ: 透水係数 |

資料引用

【出典：「土木基礎工学ライブラリー40 ジオテキスタイル」(土質工学会編)】
4.2 ドレーンのフィルター材料について

フィルター材料は、品質の長期の安定性、入手の難易、経済性、施工性等を十分に検討し、ドレーン工の当初の機能を長期間にわたり維持できるものを選定する必要がある。したがって、仮に土粒子の移動が長期間にわたり繰り返されたとしても、フィルター部の目詰まりの発生によるドレーン工の透水機能の低下を防止する必要がある。

ドレーン工で用いられるフィルター材料は、吸出し防止材あるいは目詰り防止材と称される人工材料（いわゆるジオテキスタイル）を使用することが多いことは「ドレーン工設計マニュアル（国土交通省 水管理・国土保全局治水課 H25.6.）」に記述の通りであるが、次のような条件を満たしているものが望ましいとされている。

① フィルター材の開孔径は、以下の範囲内であること
 \[0.1 \text{mm} \leq O_{95} \leq D_{85}\]
 ここに、\(O_{95}\)：ジオテキスタイル95%開孔径 (AOS)
 \(D_{85}\)：粒径加積曲線の通過重量85%相当粒径

② 長期的に目詰まりを生じないこと

③ 透水係数は1×10^{-1}cm/sec以上が望ましいが、最低でも1×10^{-2}cm/sec以上は確保すること

④ 材質の強度が高いこと
 \(T_p \geq 2.0 \text{kN/m}\) （\(T_p\)：引張強度）

⑤ 化学的変質に対して安定であること

⑥ 親水処理が施されていること

以下に、ジオテキスタイルの水理特性に関する試験方法についてまとめる。
表 4.1 ジオテキスタイルの水理特性に関する試験方法

<table>
<thead>
<tr>
<th>試験名</th>
<th>用途</th>
<th>目的</th>
<th>補足説明</th>
<th>試験方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>面内方向通水性能試験</td>
<td>排水機能</td>
<td>不織布や排水を主体とした複合製品などのジオテキスタイルの面内方向通水性能を評価する。</td>
<td>荷重による圧縮性を持つジオテキスタイルは、拘束圧作用下での厚さの定義・測定が困難なため、流量を断面積（厚さ×幅）と動水勾配で除した透水係数よりも、幅と動水勾配で除した面内方向通水性能の方が評価の面で扱いやすい。</td>
<td>「ジオテキスタイル及びその関連製品の面内方向通水性能試験方法 (地盤工学会基準、JGS 0932)」参照</td>
</tr>
<tr>
<td>垂直方向透水性能試験</td>
<td>排水機能</td>
<td>被覆材および、ろ過材として使用される不織布や織布の垂直方向透水性能を評価する。</td>
<td>面内方向通水性能試験と同様にジオテキスタイルは、土中での厚さの定義・測定が困難なため、透水係数よりも厚さを無視して評価する垂直方向透水性能の方が扱いやすい。</td>
<td>「ジオテキスタイル及びその関連製品の垂直方向透水性能試験方法 (地盤工学会基準、JGS 0931)」参照</td>
</tr>
<tr>
<td>開孔径試験</td>
<td>う透過機能</td>
<td>ジオテキスタイルのろ過機能を評価する上で必要な試験であり、フィルター材として一定量以上の土粒子の通り抜けがないかを判断する。</td>
<td>ジオテキスタイルの垂直方向透水性能と周辺土の透水性の関係およびジオテキスタイルの開孔径（分布）と周辺土の粒度分布の関係は重要である。開孔径が小さすぎると土の細粒分まで捕集するため目詰まりを起こしやすく、一方、開孔径が大きすぎると土粒子を捕集できないため十分なろ過機能となる。</td>
<td>「ジオテキスタイルの関連製品の開孔径試験方法 - 湿式開孔径試験 (地盤工学会基準、JGS 0911)」参照</td>
</tr>
<tr>
<td>強制目詰り試験</td>
<td>う透過機能</td>
<td>ジオテキスタイルの目詰り現象に対する性能を短時間で評価する</td>
<td>ジオテキスタイルの目詰りは、周辺土の粒径や浸透水の状態（流速、流れの状態、イオン、浮遊物などの水の成分の要因）によって大きく影響される。長期間のろ過機能を期待する用途については、その意味で現場において実際に用いられる土およびジオテキスタイルの組合せに対して試験を実施し、その特性を把握することが望ましい。</td>
<td>「強制目詰り試験（旧建設省土木研究所）」参照</td>
</tr>
<tr>
<td>動水勾配比試験</td>
<td>う透过機能</td>
<td>土とジオテキスタイルの供試体を合わせた平均透水係数の経時変化を整理する。これによって、長期的なジオテキスタイルの透水性能を、ジオテキスタイル単体の場合と比較してどの程度に評価して良いのか判断できる。</td>
<td>ジオテキスタイルの目詰りは、周辺土の粒径や浸透水の状態（流速、流れの状態、イオン、浮遊物などの水の成分の要因）によって大きく影響される。長期間のろ過機能を期待する用途については、その意味で現場において実際に用いられる土およびジオテキスタイルの組合せに対して試験を実施し、その特性を把握することが望ましい。</td>
<td>「動水勾配比試験（旧建設省土木研究所）」参照</td>
</tr>
</tbody>
</table>