「小規模重力式コンクリートダム合理化施工」

（本 編）

昭和55年8月
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>内容</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>はじめに</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>施工設備の実施</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>合理化施工の検討方針及び手順</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3 - 1</td>
<td>合理化施工の検討方針</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3 - 2</td>
<td>施工合理化の検討手順</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>コンクリート運搬工法に関する在来工法の適用性</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>4 - 1</td>
<td>各種コンクリート運搬工法の一般的特徴</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>4 - 2</td>
<td>各種コンクリート運搬工法の適用性と範囲</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4 - 2 - 1</td>
<td>施工法の選択手順の考え方</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4 - 2 - 2</td>
<td>通用表について（別冊：参考資料参照）</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>5.</td>
<td>在来工法の2、3の問題点の検討</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>5 - 1</td>
<td>クライミング式タワークレーン工法</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>5 - 2</td>
<td>H型軌束式クールタワークレーン工法</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>5 - 3</td>
<td>その他</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>6.</td>
<td>新しい施工法について</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>6 - 1</td>
<td>新たな施工法考察の方向</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>6 - 2</td>
<td>可能性のある新しい工法</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>参考文献</td>
<td></td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>
1 はじめに

近年、自然災害を防止し、社会生活に要請された各地でダムが設計、計画、建設、運用されている

これら数多くの建設計画のダム体積を対象とし、比較的規模が大きさによってダムの

数、体積 20 万㎥以下のダムが対象の一例を挙げている。

また、この数多くの建設計画に対応し、ダムサイトが増大すると共に、環境保全に対する配慮

からダムサイト付近の地質をできるだけ破壊しない施工法が重要視されており、在来の施工法で

は対処困難なダムサイトが増大してきている。特に小規模ダムは都市近郊に建設される場合が

多く、そのダムサイトの近くに住宅がある等、施工上の制約条件が更に厳しいものとなっ

ている。

そこで小規模重力式コンクリートダムの合理化施工の第 1 段階としてまず在来の施工法を整

理、検討しきの適用性を把握すると共に在来工法の改善すべき点を明らかにすることが必要で

あると考えた。この場合、小規模重力式コンクリートダム合理化施工対象ダムは、一辺長さ体積

10 万㎥程度（推定 550 ㎥）のダムに限ることを合わせ、場合によっては 20 万㎥程度の規模の

ダムまでその範囲に入れて考えることとした。

次に在来工法の検討結果に基づき、必要に応じ新しい施工法を考察してゆくこととする。

本書は、国土整備技術研究センターが建設省より昭和 49 年より継続受託している「コンクリ

ートダム合理化施工研究」の一環として組織された「小規模重力式コンクリートダム合理化

施工研究委員会（委員長：因村正男、茨城工業大学教授）」において検討した内容を基に取

りまとめたもので小規模重力式コンクリートダムの合理的な施工を研究する第 1 段階であるもの

である。
2 施工設備の実態

最近における体積20万㎥以下の重力式コンクリートダムの施工設備の実態を調査し、集計した。概説すれば次のとおりである。

① 体積7万㎥以下のダム

圧縮プレートとしては28切6基、コンクリート運搬設備としては4.5t鋼索式ケーブルクレーン、タービン式または自走式（移設式）タワークレーン、H型鋼索式ケーブルクレーン、片側並行式ケーブルクレーン等種々多様である。

② 体積10万㎥〜14万㎥のダム

圧縮プレートは36切2基、コンクリート運搬設備としては6t鋼索式ケーブルクレーンが多い。

③ 体積15万㎥〜20万㎥のダム

圧縮プレートは56切2基、コンクリート運搬設備としては9t鋼索式ケーブルクレーンが多い。

特にコンクリート運搬設備について昭和29年以降の過去における実績をプロットして見ると、①のとりより最近の行な機械の選定についてのべた上記の傾向とは多少異なっていることがある。

最近は体積9万㎥以下のダムにおいては走行脚式ケーブルクレーン、軽量式ケーブルクレーン、H型鋼索式ケーブルクレーン、タービン式または自走式（移設式）タワークレーン等種々の施工設備が用いられているが、体積10万㎥以下のダムになると軽量式ケーブルクレーンが選択的に使用されている。
3 合理化施工の検討方針及び手順

3-1 合理化施工の検討方針

合理化施工の研究は施工面だけ限定して考えれば良いというのもではなく、設計面との関連において合理化施工を考えなければならないうちのことをある。例えばクラック発生を許容できる設計理論が確立するとすれば、これに応じて現在の施工法を根本的に見て良いほど簡単に出るということもある。

設計と施工は密接に相関しており、設計だけの合理化、施工面だけに限定した合理化と言うことはダム建設の合理化を考えてゆく上においては充分ではない。

しかし、研究の出発点として検討項目、問題点の所在を明確にするものが必要であるので先ず第1歩、できるだけ施工面に限定して合理化を考え、ついて設計面に合理化の考え方を拡大してゆくこととする。本書は合理化施工という大きな課題の研究の第1歩をまず施工面に限定して検討したものである。

3-2 施工合理化の検討箇所

施工法（コンクリート打込み、打込み工法）の合理化検討を進める場合にコンクリート
打込みに関する在来工法（以下単に在来工法と呼ぶ）をいかなる条件の時に使用する
のが適当であるのかを検討する手順をまず明確にする必要がある。この手順は在来工
法の中から最も適切な施工法をただ1つ選定する手順ではない。在来工法のうちから選
えられた条件下で不適切な施工法を除外してゆくという形の方法を取る。

たとえばアムサムの自然条件として左右側にケーブルクレーンを設置する適切
な場所が無いか、またケーブルクレーン設置可能な場所があるが用地確保が困難な場合、
この条件でケーブルクレーン類の工法は検討対象の工法から除外される。残るのは非ケ
ーブルクレーン方式であるが、検討対象ダムの規模以上を基にして高いの他に用途条件
により更に非ケーブルクレーン方式があるいは選ばれる複数の検討対象施工法が残るとい
う手順である。

合理化を考えてゆく第1段階としては先ず今述べたような手順を明確にする必要がある。
これらの小規模電力式コンクリートダムの各種在来工法の分類と工法決定にかかわれる
種々の要因（前提条件）を整理し、各々の工法の適用性を明らかにすることが肝要であ
る。

第2段階としては、在来工法に関して、今後改良改善すべき点を挙げ検討を加えるこ
4 コンクリート運搬工法に関する在来工法の適用性

4-1 各種コンクリート運搬工法の一般的特徴

4-1-1 コンクリート運搬工法の分類

小規模重力式コンクリートダム（規模体積10万m3程度、高さ50m程度）を対象にコンクリート運搬工法を次の6つに分類した。

1）片面走行ワームクレーン工法
2）両面ワームクレーン工法
3）H型吊架式クレーン工法
4）クライミング足場式クレーン工法
5）自走式クレーン工法
6）走行式門形ジブクレーン工法

1）の走行式ワームクレーン工法において特に両側を自走式ワームクレーンを採用した理由は、小規模重力式コンクリートダムのコンクリート運搬、打込みに際し、広範囲にわたる打設能力は不要であることと設備保守のためである。

3）のH型吊架式クレーン工法は懸架クレーン型と呼称されているもので主架が懸架でその主架間を巻上することにより走行するクレーン工法である。

4）のクライミング足場式クレーン工法はダムコンクリート打込み状況に応じてタワークレーン自らタワークレーンの支持を必要足場クレーン工法の足場を専有とする工法でコンクリート打込み終了まで固定されている。

【クライミング工法】
5) の自走式クレーン工法とは具体的には大型クレーンを自ら移動しながら作業を進めていく方法で、コンクリート打込み作業を自ら移動しながら行うわけではないが、コンクリートを容易に打つという特徴を持っているコンクリート運搬工法を指す。

6) の自走式門形シブクレーン工法はダム軸に平行にトラスルを設置し、その上に門形シブクレーンを走行させコンクリートの打込みを行う工法である。

4-1-2 コンクリート運搬工法の特徴

前出の6つのコンクリート運搬工法の各々について長所、短所を順に挙げる。

1) 片側自走式クレーン工法

＜長所＞

- 設備を操作しやすい。
- 背後への環境に余り影響を受けない。
- 1.35mパケット、2.0tパケットなどにも実用が多い。

＜短所＞

- 走行路造成のため地山の硫化物およびコアミウォーターの影響を受けるため、自然環境を十分配慮しなければならない。
- 走行路を設ける場合地形の制約を受ける。
- 仮設ビルを含めた機械費等の固定費が多い。
- 機械の実用性に乏しい。

2) 走行式クレーン工法

＜長所＞

- 設備コストは走行式クレーンよりも安い。
- 設備・仮設を含めた全体工事費は走行式よりも少ない。
- 走行式クレーンに比較して、環境に対して適用範囲が広い。

＜短所＞

- 走行路を必要とするため走行能力が制限される。
- 機械の特性から走行式クレーンに比較してオペレーターが必要で、より高度の技能が求められる。
- 実績として9tまでが使用されているが、機械の特性から1.35t以上の実績が望まれる。
○機械の汎用性に乏しい。

3）装置軌道式ケーブルクレーン工法

＜長所＞
○被付、仮設等の用地における土木工事は走行式及び軌道式ケーブルクレーン工法より少ない。
○実績として4.5t, 6tが使用されており、前後の小さいダムに対しても適している。
○軌道式ケーブルクレーン工法に比較して、アンカーの位置を比較的自由に選定できることにより地盤に対する適応性が大きく。
○延床面コンクリート打設範囲（ケーブルエリア）を確保しやすい。

＜短所＞
○走行式及び軌道式ケーブルクレーン工法に比較して打設能力があり、操作性も良い。
○土木スパンが300m以上になるとケーブルのバウンズが大きくなる。
○実績として4.5t, 6t級以下のものしか使用されていない。
○機械の汎用性に乏しい。
○軌道式ケーブルクレーンに比較し軽量電力消費量が大きい。

4）クライミング固定式メータークレーン工法

＜長所＞
○機械の基本の大きさが小さいので自然環境保全の対応が容易である。
○機械の設置が比較的容易である。
○左右岸の地形に余儀なく影響を受けない。
○機械にローレンギーがある。
○オペレーターがパケットを直接でき、コンクリート打設時にバケツのバウンズが小さい。

＜短所＞
○クライミング工法を必要とするため１台のメータークレーンで打設される範囲が限定される。従って場が狭くなると数台を使用せざるを得なくなりコスト高となる。
○クレーンを上流側に設置する場合は工事中の出水時における保全対策が必要である。また後工事まで出水開始時期を支配することが多い。
○機械をクライミングする場合はコンクリート打設が中断する。

5）自走式クレーン工法

＜長所＞
○左右岸に適切な山がなく、堤高に比べて堤頂の長い前後の小さいダムに対応している。
○機械に汎用性があり、操作性に優れている。
○自然環境保全の対応がよりさらに。
○重量トンボクレーンは走行用ガードを必要としているが、走行式門形シラクレーンに比較してガーダーは前後数内に設置しない方法であること。また、ガーダーの重量も小さいことからガーダーコストは岸用部の形状が適切であればそれほど高くならない。

＜短所＞
○河床部の地形に影響を受ける。
○コンクリート打込み初期における洪水時に大型クーロークレーンを使用する場合には、堤体コンクリート打込み用取付道路（一般に河床移動土砂による堆土）の保全、仮称トンボクレーンの場合には走行用ガードの保全に問題がある。
○大型クーロークレーンの場合は4.5tパケット、仮称トンボクレーンの場合でも6tパケットまでであり、打込み可能範囲（ケーブルエリア）も小さい。

6）走行式門形シラクレーン工法

＜長所＞
○ケーブルクレーンのように、ダム地点の地形のスパンに拘束を受けない。
○打設点近くに運搬場があり、オペレーターの規模が小、コンクリート打設時にパケットのバウンズが少ない。
○ダム本体に鋼製トレッスルによる走行路を設置するため、走行路造成の土木
工事は少ない。
カーバーガラリに対しては充分対応できる。

＜留意＞
○防犯ガードを設置するためコスト高となり、段取りズムは低い。
○コンクリート打設初期における洪水時に走行ガードの保存に問題がある。
○ガードは下部はソブレアで直接打設が不可能であり、スプレッダーとし
てブドーガー等が必要となる。
○放水口、ゲート等の施工はコンクリートガードがあるため制約を受ける場合
がある。

4-2 各種コンクリート連続基礎工法の適用性と範囲

4-2-1 施工法の選択手順の考え方

あるダムサイトが選択された場合、大規模な工事方式でコンクリートダムを対象として6
つに分類した施工法の内も最も適切な施工法を選択する手順を次のように2つのステッ
プに分けて考えることとする。

① 第1ステップ（前提条件による施工法の選択）

今、ダム建設対象地点が選択されたとするとダム高さ、ダム体積等は施工法と
無関係に決定される事項であり、施工法選択の前提条件と考えられる。一般に前提
条件としてはダム地点の自然条件、ダム設計、環境保全上の条件等が挙げられる。
前提条件が与えられると6つに分類した施工法すべてが対象対象となるわけではない。
施工法のうちにはこの前提条件では不適当なものがあるはずである。不適当な
施工法はまず検討対象から除外しなければならない。施工設計にはそれぞれ限界が
あるので、たとえばソブレア方式であれば左右岸にソブレアを設
置する適切な高さの山がなければならぬが保険を確保しても十分できない場合はこ
の施工法を除外することとする。即ち二つのステップを行い、比較検討の対象となる数
種の施工法を選び出すこととする。

② 第2ステップ（選択された施工法についての比較検討）

第1ステップの二つに分けた施工法についてウェルスタディを行い、経済性
の観点及びその他の側面に至適な施工法を選定することとする。

以上のステップの内、以下に示す適用表は、第1ステップを踏り越すに相当するものである。

4-2-2 通用表について

適用表（表-1）には既に、分類した6つの施工法を、また横には、工法選択の際
に考慮しなければならない項目（前提条件等に相当する事項）を順に示している。
各種施工法のふるい分けのための特に重要な項目は、（1）体積、（2）土質、（3）ダムサ
イトの形状、（4）自然環境保全の4項目であると考えられる。
工法については、工法選択の重要性を定量的と考えられ、多くの案件下において各
ダム毎に現状最も適切なる工法が存在することはであるが、この選択を工法を見つけること
とは、ダムの建設に伴う必要である条件を考慮し、総合的に検討しなければならぬので
極めて難しいものである。

そこで、工法を進む経験の用に実績により概要、次のように考えることとし、適用
表からは除外した。

<table>
<thead>
<tr>
<th>体積</th>
<th>10万m³未満</th>
<th>10〜20万m³</th>
<th>20〜30万m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>体積</td>
<td>10〜20万m³</td>
<td>1〜15万m³</td>
<td>15〜23万m³</td>
</tr>
</tbody>
</table>

表の見方は基本的に二つつぶしてある部分は適用性合いを判断するわけであり、そ
のつぶしてある部分が大きくなれると従い、より適用性が高いと考えることがお
す。また、その検討も、もしくは考え方についてコメントとして適用表の後に各項目
毎に説明としてある。

ここで適用表を見て工法の適用性及び範囲を判断する際に、ここと話しあかかげ
ばれることとは、この適用表を絶対的に判断基準として解釈してはならないとい
うことである。単に、本表は一例、適用性の判断基準として適用表を組むものとは
考えず、基本的、標準的見方であると考えるべきである。

なお、この適用表を作成するにあたりその検証を目的として12種のモデルダムサ
イトを設定し、各々のダムサイトに各々のコンクリート連続工法を適用させ、各連続工
法の適用結果を行った。

そのウェルスタディの内容は「在来工法によるコンクリート連続打込みブロックの
比較検討」としてまとめ別件に示した。
表 - 1 小規模重力式コンクリートダムの各種施工法の適用表

<table>
<thead>
<tr>
<th>項目（要因）</th>
<th>(1) 混合</th>
<th>(2) 規模</th>
<th>(3) 合計</th>
<th>(4) 長さ (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300m</td>
<td>450m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160m</td>
<td>120m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94m</td>
<td>70m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41m</td>
<td>26m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 片側走行路式ケーブルクレーン工法
2. 軟索式ケーブルクレーン工法
3. 軟索式ケーブルクレーン工法
4. 橋梁用有限式ケーブルクレーン工法
5. 自走式クレーン工法
6. 走行式門形スプトクレーン工法

图表 - 1 コンクリート運搬工法

图表 - 2 ダムサイトの地形

图表 - 3 左右岸の平面形状

图表 - 4 谷の横断形

图表 - 5 自然環境

图表 - 6 会計

图表 - 7 文化
<table>
<thead>
<tr>
<th>項目 (要因)</th>
<th>打設機械選定法</th>
<th>ダム本体起工場</th>
<th>河床対策の難易</th>
<th>操作性</th>
<th>設用性</th>
<th>設備点検</th>
</tr>
</thead>
<tbody>
<tr>
<td>コンクリート連携工法</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | 片側走行式
ケーブルクレーン工法 | | | | | |
| 2 | 車軸式ケーブルクレーン工法 | | | | | |
| 3 | 車軸式 \(\times \) \(\times \) 修理工法 | | | | | |
| 4 | クライミング定盤式
タワークレーン工法 | | | | | |
| 5 | 自走式クレーン工法 | | | | | |
| 6 | 走行式門式ジブクレーン工法 | | | | | |

コメント

(1) 説明
① 堆体積15万m³未満に対しては、片側走行式ケーブルクレーンが使用されているケースは一般に少ない。
② バケット重量61tを越えるH型軸受式ケーブルクレーンの実績は少ない。
③ クライミング定盤式タワークレーンはコンクリート打ち込み範囲が限定されるため、堆体積10万m³程度以上のダムになると堆頂長が長くなるため使用が必要となり経済的でない。
④ 自走式クレーンのバケット重量は61t程度までである。
⑤ 走行式門形ジブクレーンは、テレスコープ等の施工設備費が非常に大きくなるので特殊なケースを除いてこの工法は使用には向かない。

(2) 堆頂長
① 表中の記号「」は建設省河川総合開発事業、治水ダム整備事業の重力式コンクリートダムの堆頂長の分布を堆体積別に（105万m³未満、105〜15万m³未満、15〜20万m³）調査した結果であり中央の「」は平均堆頂長を示す。
② 片側走行式ケーブルクレーン工法
堆頂長の最大を450mとしたのは走行式ケーブルクレーンの限界長を基準としたものでこれより有効スパンを逆算し、450mとした。（有効スパンが500mを超えるとバケットの振れが大きくなると共にサイクルタイムが長くなりコントロールの込み込み能力が著しく低下する。）
堆頂長の最小を150mとしたのは、テレスコープを必要とする場合が多いので経済性と過去の実績によった。
③ 車軸式、H型軸受式ケーブルクレーン工法
堆頂長300mに対する車軸式スパンは約400m程度必要でありこのスパン長がバケット操作上の振動等を考慮した場合、車軸式ケーブルクレーンの操作上の限界長である。

同様の理由により、H型軸受式の操作上の限界スパンは約300mでありその場合の適用可能最大の高頂長は約220mである。

5 クライミング定置式マワークレーン工法
コンクリート運搬のカーブアリの関係から高頂長150m程度を越えるとマワークレーン1基ではカーブ不可能の部分が大きくなる。
マワークレーンの概数基設置するとコンクリート運搬込み費の内、マワークレーンの機械損耗が通常のケーブルクレーンに比較して非常に大きくなり経済的でない。但しダムサイトの地形によってはゾーン長40m級のマワークレーンを2基使用した方が得策である場合もある。

6 自走式クレーン工法
この工法は左右岸に通じる山が無くケーブルの設置が不可能である場合に善体積、業績が余り大きくなくて、向減量部が平地かつ周辺を既存のコンクリートを運搬することが出来る。自走式クレーンの機械性能（ゾーン長35m、ベット6m程度）から判断すると打ち込み可能高頂長は30m程度、体積は1台で約10万m³程度が限界と考えられる。
なお、体積10万m³程度に対応する最長の高頂長は約200mである。

6 走行式門形ジブクレーン工法
この工法は自走式クレーン工法と同様用床部が平坦であれば高頂長に制限されずコンクリートを運搬することが可能である。門形ジブクレーンの自重が大きいため、一般にはトレンシルガーター等の構造費が大規模ダムにおいては特に増大し得策でない。
従って異なるケースの場合は検討の余地があるがこの走行式門形ジブクレーン工法はむしろ大規模ダムの施工法として好ましいと考えられる。

(3) ダムサイトの地形
適用表の見方
適用表の「ダムサイトの地形」のぬりつぶしの大、小は施工設備の経済的に施工できる可能性の大小を表わしており、一般的傾向を示すものである。

また、適用表のコンクリート運搬工法の内、1〜3については左右岸の平形状が施工設備を決める主な要因となっているので平面形状を見て、その適用性の一般的傾向を判断する。
同様に4〜6の運搬工法については河谷の横断形が施工設備を決定する際に支配的要因となっている。

施工設備の規模の限度
ダムサイトの地形の各条件コンクリート運搬工法の適用は一応、いかなる工法でも適用的により可能であるが施工設備の規模に一定の限界値を過去の実績等より次のように定めた。
(i) パンクレーン及びクレーン走行時需用トレンシルガーターを必要とする場合
そこはその使用高さは40m程度を限度とする。
(ii) 基盤、H型軸受式ケーブルクレーンの基礎の鉄塔高さは30m程度を限度とする。
(iii) 走行時、パンクレーンの設置方法、地盤を図示する場合、地盤周辺長が40m程度以上の存在であること。
従って適用性の大、小と施工設備の規模の限度を同時に考慮し施工法の選、不適を判断する必要がある。

1 左右岸の平面形状
適用表中(a)から(d)へ移行するに従ってトレンシル、鉄塔等の仮設設備がより必要となる平面形状の限界になるべくある。aより(d)までの平面形状を等高線により次のよう式定義し、分類する。

表-2 基本形状
平面形状の基本形の定義

平行：表-2に見るように左岸もしくは右岸の山の等高線が河川の流れ方向とほぼ平行に一定長さ存在し、その他は直線で一定の勾配で続いているものとする。

L：河川の流れ方向と平行な山の等高線がダム軸方向に一定長さを越えて延びている地形。

凸：山の等高線がダム軸方向に立ち上がり下流方向を傾斜立ち上がっていく地形。

平面形状の分類

平面形状の基本形の組合せによりダムサイトの平面形状を表-3のように6つに分類する。

(a) 平行～平行、(b) 平行～L、(c) 平行～凸

・ケーブルクレーンの片側走行路は理想的に平行～平行のダムサイトであるが、他に軸方向、水平軸方向に比較し、機械配置、耐荷重のための彎曲による経済性に劣る。しかしながら、コンクリートスラストの信頼性、安定性の点では最もすぐれている。

・メルスケーンの片側走行路は平行～平行に比較し、平行～L、平行～凸の近辺に積み重ねる適用性がある。これによりケーブルクレーンの走行路の位置選択の自由度がより小さくなると考えられるからである。

(d) L～L、(e) 凸～L、(f) 凸～凸

・ケーブルクレーンの片側走行路はトラス構造工事および比較的大量の材料を必要とするため、他のケーブルクレーン方式に比較し、経済的で不利である。

・H型軸端式の方が軸端式に比較し、軸端間のローブロボット吸上機を必要としないこと、また、支圧鉄塔の沖谷高差を大きくすることができる等により平面形状に対する適用性は大きい。

・基本的には軸端式の支点総数は固定端1本、軸端式2本の計3点である。H型軸端式は4支点である。同じ高さの鉄塔を必要とする場合、鋼材重量はH型軸端式の方が多く、基礎コンクリート量は逆にケーブル式軸端式の方が少なくなる。H型軸端式の場合は基礎の位置を比較的自由に選択できるので吸上機の高さをそれぞれ必要としない場合が多い。伝達よりH型軸端式と軸端式の支圧（鉄塔）設置位置等の自由度は、H型軸端式において取り縮め、もしくはH型の方が若干低くなると考えられる。

2) 谷の横断形

・谷形とは堤頂長（L）と堤高（H）の割合（L/H）が7程度以上のものを示す。

過去の堤体積20万m³以下の重力式コンクリートダムのL/Hを調査するとほとんどが5以下であった。

・クライミング定住式メータクレーンは谷形の地形であるとカーバージュの傾斜から横断面固定していない場合が多いので不適切である。

・自走式クレーンはクライミング定住式メータクレーンと逆に河床部が一般的にフラットと考えられる谷形の地形に適切である。

・走行式門形ジブクレーンをコンクリートダムのコンクリート運搬に採用する場合、前述の(1)堤体積、(2)堤頂長の項目とこの谷の横断形における谷形という項目を考慮すると仮想的な重力式コンクリートダムへの走行式門形ジブクレーンの運用はほとんどあり得ないと考えられる。
(4) 自然環境保全

鉄筋式と打設鉄筋式でH型打設式の方が多少適用性が大きく、打設式の場合は打設振動の影響が大きく、必要となる場合が多い。H型打設式ではその必要が少ないこと、又、アンカーの位置を比較的自由に選定できることによる。

(5) 打設機械能力

① ケーブルクレーン

○ケーブルクレーンの内、片側走行式、単線式とH型打設式のケーブルクレーンを同スパンで比較した場合、前者のケーブルクレーンは三角形であり、後者は四角形とすることからH型打設式の方がケーブルクレーンが大きい。

○クラインシング装置式スパーケーブルクレーンによるコンクリート長の連続性を考えると、小規模打設式コンクリートタブレにいてはせいぜい1基が必要であるが、ケーブルクレーンの場合は2基から3基で十分である。

○自走式クレーンは具体的に大型クーラークレーンと呼称、トボクレーンを意味している。大型クーラークレーンの水平リーチは5メートル（4.5tバケット）、揚程40メートル程度で最上である。ダム本体の上下渡りだからでもコンクリート打込みを行うような非常に短い状況でのダイヤルクレーンは、ケーブルクレーンを多少大きく取ることが出来ることである。

また、俗称トボクレーンのダム軸方向ケーブルクレーンはダムサイド滑走路が平たんであれば大きさ取れるがダム上下渡りの水平リーチはたかだか3.5メートル（6.0tバケット）、揚程制限は30メートルである。

○走行式門形ジブクレーンはパンク線の盛りかえを必要とするようダム高さの場合ケーブルクレーン、タワークレーンに比較し経済的ではない。

② バケット容量

○霧なりは9.0tバケットを、また、H型打設式は6.0tバケットをそれぞれ越えるバケットの使用実績はほとんどない。

○自走式クレーンの内、大型クーラークレーンによるコンクリート打込み実績は非常に少なく但し、現時点では4.5tバケット程度が限度と考えられる。

また、俗称トボクレーンのバケットは6.0tであり、かなりの実績がある。

(6) ダム本体基礎掘削とコンクリート運搬機械の組み合わせ工事との関連（工法上の問題）

① 片側走行式ケーブルクレーンはダム本体基礎掘削に先行してケーブル走行路の掘削を実施しなければならないケースが多い。

② 打設式、H型打設式ケーブルクレーン及び大型クーラークレーンは片側走行式ケーブルクレーン、クラインシング装置式タワークレーン及び走行式門形ジブクレーンに比較し、一般にダム本体基礎掘削の影響を受けずに組み合わせ工事が実施できる。

③ クラインシング装置式タワークレーン及び走行式門形ジブクレーンは一般にダム本体基礎掘削が終了したあとにクレーン基礎工事等を重ねることが多い。

④ 自走式クレーンの内、俗称トボクレーンはダム本体基礎掘削工事の影響を走行式ジブクレーン等ほど受けないと考えられる。（図中破線まで）

(7) 眩水対策の難易

クラインシング装置式タワークレーン、走行式門形ジブクレーン及び自走式クレーン工法はコンクリート打込み初期における眩水時にクレーン基礎、走行カーティー等に支障が及ぶ場合がある。

(8) 打設機械の運転管理

① 操作性

H型打設式及びクラインシング装置式タワークレーンは次で他のケーブルクレーンに比較し、操作性に劣る。

H型打設式ケーブルクレーン

(i) 操作に練習を要する。（約1ヶ月程度）

(ii) 吊荷の振れが大きいこと、また、コンクリート放置時のバウンシングが大きい為、他のケーブルクレーン方式に比較し、サイクルタイムが30秒程度以上長くなる。

(iii) ダムの上流側または下流側のブロックを打設する場合（もしくは上・下流側のブロックに材料を運搬する場合）バケットを2本の固定ケー
5 在来工法の2，3の問題点の検討

5-1 クライミング定置式タワークレーン工法

近年、環境保全への配慮から本格的なダムコンクリート打込み用のクライミング定置式タワークレーンが登場し、現在リーチ75m、パケット重量135tの性能を持つ最大級の機種が実際に動いている。このタワークレーン工法を採用することに際し、留意しなければならない事項及び今後検討を必要とする項目について述べる。

5-1-1 タワークレーンの設置位置

原則として堤体数内は避けることが望ましい。

ただしカーティア及びサイクロナムの関係から遠くの堤体数内に設置する場合にはその設置位置の決定に際しては地盤及び基盤岩盤への影響について検討が必要である。

特に左右岸斜面上に設置する場合はダム構造基礎のダム堤体への影響及びダム底盤固結 paydayとの関係を十分調査し検討することが必要である。

5-1-2 設計

（1）基盤の設計

基盤は十分な幅を持ちダム基礎周辺に及ぼす影響をより及ぼす設計とすることが必要である。

特に（作業時）における基盤反力分布は基盤コンクリートの自重により引張領域を生じない設計とする。ただし地震時で非常時に生じた引張領域ではPS工により対処する設計としても良い。

既に打込込まれる基礎コンクリートとタワークレーン基礎コンクリートとの境界付近で応力集中及び他の原因により基礎コンクリートにクラックが発生する恐れがあるので、基礎コンクリートの形状は四角形を避けるだけ円形に近い形とすることが望ましい。
その基礎コンクリート形状の最大の大きさは今後検討する必要があります。

(2) 箱詰め部の設計
次の3点については、今後検討課題と考えられる。
(i) ボートとすると、その最大直径
(ii) メータを含むサポート（中間メータの挿入止め）
自立高さ以上にクラシ飛ばしてゆくとメータが被る打ち込み適度に影響を与えるので、極磁コンクリートにサポートを取る必要がある。サポートの方法及びサポート反力及び極磁コンクリート強度との関係
(iii) 椎関部はコンクリートで埋めることを原則とするがエレベーターシャフトとして利用する方法
又、箱詰め後にコンクリートを打込む際、その箱詰め部の強度、ライフタイム除去の方法及びコンクリート打ち込みスピードについても検討する必要がある。

5-2 H型吸水式ケーブルクレーン工法
この「在来工法の適用性と範囲」に述べたようにH型吸水式ケーブルクレーン工法は同じケーブルクレーン工法の走行路及び軌素系に比較し、次の2点で適用性が高いと
考えられる。
(i) 地形への対応性が高い。
(ii) カーテンリップを広く確保できる。
しかしながらH型吸水式の構造上の特性から次のような問題点が存在する。
(1) エンジン出力時のブリッジングが大きく変形する時に振動が容易に振動する。
(2) パケットを2本の固定線で吊り下げるときバンカー線でパケットを吊り上げる際に、固定線の中心より外れるに従って固定線に曲げがかかるパケットが上下流
方向に流れを非常である。この現象はバンカー線のパケットを吊り上げる際にのみあり、通常の荷の吊下げる時も起こる。
(3) 吊り上げ、吊下げ作業時に吊上げケーブルが
堆体等の構造物に接触し、操作上非常に不適当が懸

い。
これは特に堆体がかななり打ち上がって来た場合、
上・下線にパケット、材料等を吊下げる時、

5-3 その他
レディーエキスポートコンクリートのダム堆体コンクリートへの利用について
次の3種類の製造方法が種々の制約から使用コンクリート量の小さなダムにレディーエキスポートコンクリートが利用できるケースがある。
(1) 新規パッケージブロック購入は見合わない。
(2) パッケージブロック産地、米スペイシーの需要による高倉証のため、内陸面換算及び
農業への依存を及ぼす。
(3) ダムサイトの暖房不足によるコンクリートックスの施工中にコンクリートまきを散
じ、交通混雑を緩和する。
問題点及び留意点は製造業の通じるである。
(1) コンクリートの品質
レディーエキスポートコンクリート中に空気含有、スランプ、温度に変化が生じコンクリートの変弾係数が大きくなる。又、放出時の冷蔵に注意を要する。

-26-
6 新しい施工法について

6-1 新たな施工法考察の方向

在来工法の適用性を基に行ったAーステージの分析結果から次の事実が明らかになった。

(1) 在来工法の中では各種条件が考慮されるダムサイドに適用されるが、適用率が高い。しかし環境保全の観点から揚水を目的としたクライミング式ダムサイド工法を採用するとコストがかさむ場合にはこれに切り替えが考えられる場合がある。

(2) 在来工法の内、いかなる工法を採用しても経済性に問題がある場合に防災設備をダムサイドに組み込むが、これはダムサイドの両端条件の如何にあるゆる性を経済的にコンクリートを施工する工事の必要性を示していると考えられる。

3. 最近のダムサイドの形状を示すと共に、在来工法の範囲内では経済性の追求に限界があることを示唆していると言える。特に小規模ダムのダムサイドの条件として民家が近くにある場合、蒸発式クーランクレーン等を採用する場合の面に着目し、補償が難しく、コンクリート量が少ないと、高さに低下するに対し、適正な長さに長いダムサイドがあり、従来の施工法では対処困難であると考えられる。

コンクリート工事、打込み設備はダム専用特殊機械を使用するなどの効果があるが、打込み設備を使用する方が施工条件に有利であると考えられる。特に打込み設備を用いる場合には、コンクリート打込み量の状況と反射して弾性の利用が可能であること。

(4) クーラークレーン打込みコストが安定していることは、高効率化の必要が示唆される。

5. 初期ダムサイドを考慮する際には、ダムサイドの形状を示唆するように、多少施工状況を考慮しながらも、効果があることを考慮する必要があると考えられる。

また、コンクリート工事設備を考慮することによって施工の経済性を追求するのか、ダムコンクリート工法に立って総合的に経済性に求めることは重要であるとわかる。

この点についてはダム規模が大きく変化してゆくに伴って経済性を追求することに重点を置くことが必要である。
6-2 可能性のある新しい工法

6-2-1 ポンプ工法

主たる打込み設備はポンプと配管であり、設備は従来のコンクリート打設箇所、地質の適合性が大きく、特に急な打込み量を大きくする必要がある場合、特にでも場合を設け、同時に数基所の打込むことを目的に行うのが普通である。しかしながら、現在のコンクリート打設箇所、打込み箇所が少ないうちに最大打設箇所は80mm以上のコンクリートが打設難であり、かつ圧送管の閉塞及び打込み速度が下っており、そのため、最大打設箇所は40mm程度である。このため、在来のコンクリートに比べて単位セメント使用量が増加することとなる。

今後検討すべき事項を以下にまとめる。

① 圧送コンクリートの耐久性

コンクリートの圧送性を増大するため、従来のコンクリート打設箇所、スランプに比べて大きなスランプのコンクリートが望まれているのでスランプの大きいコンクリートの耐久性について検討する必要がある。

② 配管材料の軽量化

配管を用いるが重量が大きく作業性が悪いので軽量の材料、たとえばステンレス、強度をもったニール管等の利用を検討する。

③ 流動用

コンクリートの圧送性を高める為、流動用の処理を検討する。

④ 吐出し口におけるコンクリートの凝固

打込み現場（ブロック内）では圧送されて来たコンクリートをスレッドニングする為、吐出し口を常に移動させるなければならない。このための簡便なディストリビューションの方法を検討することが必要である。

⑤ コンクリート圧送における管閉塞の事態に対処する方策

6-2-2 ベルトコンベア工法

ベルトコンベアは連続輸送装置であるので時間により輸送能力が大きいという利点を有しており、これらを分野で使用されている。

我国では長大トンネルのライニングコンクリートの連続圧送ベルトコンベアを利用し良い成績を収めたとの報告がある。又、アメリカでは長大トンネル及びダムのコンクリート圧送にベルトコンベアの使用実績がかなりあり、ベルトコンベアによるコンクリート圧送自体には大きな問題もないと考えられる。

しかし、ダムコンクリートの運搬、打込みにベルトコンベアを利用する方法の検討を好む点がある。

① ベルトコンベアの運搬、打込み場所は3次元的に個別変更し、その供給量も一定できない。これに対処する為にはベルトコンベア装置を小型化することが必要である。

② ダムサイトの形状及び打込み箇所の打込み箇所の設備費の増大は避けられない。

③ ベルトの駆動力供給、圧送時のコンクリートの断面、送りスピード、ベルト幅等機械自体について、検討すべき点がある。

小型ダムにおける圧送はコンクリート供給箇所は並行できる必要は無いので、ベルトコンベアを打込み場までベルトコンベア運搬を行う必要は無く、コンクリートの運搬コストが低くなる効果がある。

そして、ホイール式連続機械にホッパーとコンベアの間隔ベルコン（長さ12m程度、鐘形可変）を取付けたエクレージョンのベルコン車とバッチャープランクからそのホッパーへコンクリートを供給するトラックに料金の組合せによるコンクリート用供給システムが、小型ダムにフィットした可能性があると考えられる。この方法でならば機械設置が大規模となり設備費を小さく抑え、コンクリートの弾力的打込みも可能である。

6-2-3 RC Dコンクリート

大規模ダムで使用されているRC Dコンクリートを小型ダムにも適用することを検討する。この場合は、大規模ダムにおけるRC Dコンクリート工法を多少異なる施工法を考察することが必要である。例えば型枠を用いない施工法、プレキャスト型枠を利用する施工法等である。
在来工法によるコンクリート運搬打込み
プロセスの比較検討

昭和55年8月
目次

1. 目的 ... 37
2. 比較設計のケース .. 37
3. 比較設計の作業条件 .. 55
4. 比較設計の結果 .. 60
5. 考察 ... 66

付表：⑨〜①ダムのコンクリート運搬打込み設備経済比較表 68〜75
付図：⑨〜①ダムのコンクリート運搬打込み設備平面図 77〜122
1. 目 的

小規模重力式コンクリートダムのコンクリート運搬打込みは従来、様々な方法により施工されてきている。そのコンクリート運搬打込み工法の採用にあたっては各ダム毎にダムサイトの条件を考慮し、いくつか比較検討がなされている。

そこで各種コンクリート運搬打込み工法の適用性を同一条件のもとで検討して明らかにすると共に、本編「小規模重力式コンクリートダム 合理化施工」の表-1「小規模重力式コンクリートダムの各種施工法の適用表」の検証を目的として実際にダムサイトを想定しケーススタディを行った。

2. 比較設計のケース

本編「小規模重力式コンクリートダム 合理化施工」の適用表におけるダムサイト地形の分類にとづき、典型的なダムサイトを有するダムを8ヶ想定した（p参照）。ダムサイトの地形条件、ダム要体積及び堤頂長等を考慮し、各々のダムサイトに適切と考えられるコンクリート運搬工法を2、3適用させ、コンクリート運搬打込みプロセスの経済比較を行った。

この経済比較においては、5グループに分け1グループあたり1又是2ヶのダムを分担し作業を行った。

各ダムの諸元及び比較検討のケースを示せば次の通りである。
コンクリート設楽工法

1. 片側走行式ケーブルクレーン工法
2. 軌索式ケーブルクレーン工法
3. H型軌索式ケーブルクレーン工法
4. クライミング式立割式タワークレーン工法
5. 走行式門形ジブクレーン工法

比較設計ケース一覧表

<table>
<thead>
<tr>
<th>ダム名</th>
<th>コンクリート供給方式</th>
<th>構体高 (m)</th>
<th>バケット容量 (㎥)</th>
<th>構高 (m)</th>
<th>構長 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>① ダム</td>
<td>1, 2, 4</td>
<td>20</td>
<td>30, 45</td>
<td>236</td>
<td>154</td>
</tr>
<tr>
<td>② ダム</td>
<td>2, 4, 5</td>
<td>20</td>
<td>30, 45</td>
<td>203</td>
<td>355</td>
</tr>
<tr>
<td>⑤ ダム</td>
<td>1, 2, 4</td>
<td>19</td>
<td>30, 45</td>
<td>1525</td>
<td>200</td>
</tr>
<tr>
<td>⑥ ダム</td>
<td>1, 2</td>
<td>16</td>
<td>20, 30</td>
<td>6145</td>
<td>300</td>
</tr>
<tr>
<td>③ ダム</td>
<td>2, 3, 4</td>
<td>14</td>
<td>15, 20</td>
<td>585</td>
<td>184</td>
</tr>
<tr>
<td>⑨ ダム</td>
<td>2, 3, 4</td>
<td>12</td>
<td>15, 20</td>
<td>318</td>
<td>180</td>
</tr>
<tr>
<td>④ ダム</td>
<td>2, 3, 4</td>
<td>9</td>
<td>15, 20</td>
<td>62</td>
<td>140</td>
</tr>
<tr>
<td>⑧ ダム</td>
<td>2, 3, 4</td>
<td>7</td>
<td>15, 20</td>
<td>144</td>
<td>171</td>
</tr>
</tbody>
</table>
3. 比較設計の作業条件

比較設計ケース一覧表にともづきコンクリート反射打ち込みプロセスの経済比較を行う場合の作業前提条件を以下に示す。

経済比較の対象範囲はコンクリート反射打ち込みプロセスとし、具体的にはバッチャープラントから出たコンクリートがバンカー線を通じてコンクリート運搬機械によりガム打ち込み前に運ばれる間の工程である。

3－1. コンクリート反射工法の施工設備設計基準

各種コンクリート反射工法の施工設備規模に経済性及び安全性から目をとまる一定限度を過去の経験より次のように定めた。

(1) トラスルガーデー

バンカー線の長さ

クレーン走行基準の間隔

\[H_v < \text{（20 m程度）} \]

\[H_g < \text{（20 m程度）} \]

(2) 軌条式、日型軌条式クレーンの鉄塔高さ

\[H_T < \text{（30 m程度）} \]

(3) 走行式ターベルクレーン塀隔基面長

\[L < \text{（40 m程度）} \]

3－2. コンクリート反射工について

(1) 打込み部位基準

① 1日平均打設時間を10時間とする。

② 1ヶ月の作業可能日数を21日／月とする。

(2) 打込み使用機械能力とバッチャープラント

クレーンの時間当たり平均作業量とバッチャープラントの組合せを示す。
クレーン能力とバックチャープラント

<table>
<thead>
<tr>
<th>クレーン</th>
<th>起上げ荷重</th>
<th>バックチャープラント</th>
<th>時間単位動作重量 (トン/分)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケーブルクレーン</td>
<td>1.0 t</td>
<td>56 m x 3</td>
<td>60 (6分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>(足行式)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.0 t</td>
<td>56 m x 2</td>
<td>40 (4分30秒)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6.0 t</td>
<td>28 m x 3</td>
<td>30 (3分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>ケーブルクレーン</td>
<td>9.0 t</td>
<td>56 m x 3</td>
<td>30 (2分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>(吊梁式)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.0 t</td>
<td>28 m x 3</td>
<td>20 (1分30秒)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4.5 t</td>
<td>28 m x 2</td>
<td>10 (1分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>ケーブルクレーン</td>
<td>6.0 t</td>
<td>28 m x 3</td>
<td>20 (2分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>(吊梁式)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 t</td>
<td>28 m x 2</td>
<td>10 (1分30秒)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.5 t</td>
<td>16 m x 3</td>
<td>6.5 (4分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>タワークレーン</td>
<td>9.0 t</td>
<td>56 m x 2</td>
<td>30 (2分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>タワークレーン</td>
<td>6.0 t</td>
<td>28 m x 3</td>
<td>20 (1分30秒)</td>
<td>1</td>
</tr>
<tr>
<td>クライミング足行式</td>
<td>4.5 t</td>
<td>28 m x 2</td>
<td>10 (1分30秒)</td>
<td>1</td>
</tr>
</tbody>
</table>

(3) 打込み設備購入価格一覧表（SS4年度価格）

<table>
<thead>
<tr>
<th>名称</th>
<th>高さ</th>
<th>購入価格（万円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5トン、スパンL=45m9、H=10M</td>
<td>400,000</td>
<td></td>
</tr>
<tr>
<td>9.0トン、L=400m9、H=8M</td>
<td>300,000</td>
<td></td>
</tr>
<tr>
<td>9.0トン、L=400m9、H=10M</td>
<td>160,000</td>
<td></td>
</tr>
<tr>
<td>6.0トン、L=300m9、H=10M</td>
<td>120,000</td>
<td></td>
</tr>
<tr>
<td>4.5トン、L=250m9、H=10M</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>6.0トン、L=300m9、H=10M</td>
<td>110,000</td>
<td></td>
</tr>
<tr>
<td>4.5トン、L=250m9、H=10M</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td>13.5トン・75m9、H=30M、中間タワー6000m9、3m</td>
<td>400,000</td>
<td></td>
</tr>
<tr>
<td>9.0トン・75m9、H=30M、中間タワー5000m9、3m</td>
<td>320,000</td>
<td></td>
</tr>
<tr>
<td>6.0トン・50m9、H=30M、中間タワー4000m9、3m</td>
<td>240,000</td>
<td></td>
</tr>
<tr>
<td>4.5トン・50m9、H=30M、中間タワー3000m9、3m</td>
<td>170,000</td>
<td></td>
</tr>
<tr>
<td>56m x 3 (4.5m)</td>
<td>63,000</td>
<td></td>
</tr>
<tr>
<td>56m x 2 (3.0m)</td>
<td>52,000</td>
<td></td>
</tr>
<tr>
<td>28m x 3 (2.25m)</td>
<td>37,000</td>
<td></td>
</tr>
<tr>
<td>28m x 2 (1.5m)</td>
<td>33,000</td>
<td></td>
</tr>
<tr>
<td>8トン</td>
<td>82,000</td>
<td></td>
</tr>
<tr>
<td>1.000t</td>
<td>14,000</td>
<td></td>
</tr>
<tr>
<td>500t</td>
<td>8,700</td>
<td></td>
</tr>
<tr>
<td>300t</td>
<td>6,700</td>
<td></td>
</tr>
<tr>
<td>200t</td>
<td>4,800</td>
<td></td>
</tr>
<tr>
<td>100t</td>
<td>2,700</td>
<td></td>
</tr>
<tr>
<td>2.5トン、H=240M</td>
<td>23,000</td>
<td></td>
</tr>
<tr>
<td>0.5トン、H=180M</td>
<td>20,000</td>
<td></td>
</tr>
</tbody>
</table>
① タワークレーン基礎価格(£5.4年度)

<table>
<thead>
<tr>
<th>作業半径(m)</th>
<th>13.5</th>
<th>9.0</th>
<th>6.0</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>対応重力(トン)</td>
<td>4.5</td>
<td>3.0</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>7.5</td>
<td>410,000</td>
<td>327,000</td>
<td>285,000</td>
<td>-</td>
</tr>
<tr>
<td>6.0</td>
<td>-</td>
<td>295,000</td>
<td>255,000</td>
<td>255,000</td>
</tr>
<tr>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>243,000</td>
<td>170,000</td>
</tr>
<tr>
<td>4.0</td>
<td>-</td>
<td>-</td>
<td>142,000</td>
<td>120,000</td>
</tr>
<tr>
<td>3.5</td>
<td>-</td>
<td>142,000</td>
<td>125,000</td>
<td>100,000</td>
</tr>
<tr>
<td>中間フォーカー(3m単位)</td>
<td>6.000</td>
<td>5.000</td>
<td>4.000</td>
<td>3.000</td>
</tr>
<tr>
<td>負荷(トン)</td>
<td>5.000</td>
<td>4.000</td>
<td>3.70</td>
<td>3.10</td>
</tr>
</tbody>
</table>

* 上記価格はすべて中間フォーカー(H=30m, 開放式)込み

② (日製作成)(£5.4年度)

<table>
<thead>
<tr>
<th>負荷の種類</th>
<th>作業半径</th>
<th>負荷(トン)</th>
<th>売入価格(千円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4t×30m</td>
<td>5.0</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>2 5t×30m</td>
<td>6.0</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>3 6t×30m</td>
<td>6.5</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>4 7t×30m</td>
<td>7.0</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>5 10t×30m</td>
<td>8.0</td>
<td>8000</td>
<td></td>
</tr>
</tbody>
</table>

* 中間ノーズ単価: 10t×30m: 250万円/6m
5,6,7t×30m: 200万円/6m
8t: 180万円/6m
なお、上表基準価格はすべて中間フォーカー(H=18m, 標準点)込み

3-3 単価について

(1) 鋼材 4万円/1（製作, 運搬, 包装込み）
(2) コンクリート 3万円/m³（製造, 鉄筋込）
(3) 検査 1,000円/㎡（製作, 構造, 運搬込で、土砂の区別はしない）
(4) クレーン搬入, 排気 1万円/1
その他の材料の単価は「建設物価(£5.4年度、建設物価調査会)」によるものとする。

3-4 その他

(1) パッチープラント位置は左右どちらでも可。
(2) 原設施

① 2箇所とする。
② ダム完成後当然必要となる道路（たとえば付帯道路）を当初仮設道路として使用する場合（もしくは一部のみ）は、これら道路の建設費は構築しないことにする。
③ パッチープラント, クーロンクレーン走行路等の設置の為の工事通行路は考慮
表一 各ダムのコンクリート運搬打込み設備の検討結果

<table>
<thead>
<tr>
<th>ダム名</th>
<th>メーカー</th>
<th>供給量</th>
<th>運搬方式</th>
<th>検討項目</th>
<th>検討結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>三菱</td>
<td>20000</td>
<td>機械式</td>
<td>供給量</td>
<td>20000</td>
</tr>
<tr>
<td>B</td>
<td>住友</td>
<td>15000</td>
<td>機械式</td>
<td>供給量</td>
<td>15000</td>
</tr>
<tr>
<td>C</td>
<td>旭化成</td>
<td>10000</td>
<td>手動式</td>
<td>供給量</td>
<td>10000</td>
</tr>
</tbody>
</table>

（注）①検討評価基準を示す。 A: 全工数 (単位:套) B: 仕様 (単位:套)

表二 各ダムのコンクリート打込み設備の検討結果

<table>
<thead>
<tr>
<th>ダム名</th>
<th>メーカー</th>
<th>供給量</th>
<th>運搬方式</th>
<th>検討項目</th>
<th>検討結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>住友</td>
<td>18000</td>
<td>機械式</td>
<td>供給量</td>
<td>18000</td>
</tr>
<tr>
<td>E</td>
<td>旭化成</td>
<td>13000</td>
<td>機械式</td>
<td>供給量</td>
<td>13000</td>
</tr>
<tr>
<td>F</td>
<td>三菱</td>
<td>8000</td>
<td>手動式</td>
<td>供給量</td>
<td>8000</td>
</tr>
</tbody>
</table>

（注）①検討評価基準を示す。 A: 全工数 (単位:套) B: 仕様 (単位:套)
表 - 2 各ダムにおける各工法毎の工事費一覧

<table>
<thead>
<tr>
<th>コンクリート量 (㎥)</th>
<th>左右岸の平面形状</th>
<th>ケーブルクレーン使用状況</th>
<th>ケーブルクレーン組立固定式</th>
<th>ケーブルクレーン組立固定式</th>
<th>ケーブルクレーンH型固定式</th>
<th>ケーブルクレーンクライミング固定式</th>
<th>走行式門枠タイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000</td>
<td>凸 - 平行</td>
<td>286,896.49万円</td>
<td>197,173.59万円</td>
<td>154,097.41万円</td>
<td>373,677.84万円</td>
<td>390,307.19万円</td>
<td>2,230万円</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート単価</td>
<td>1,740円</td>
<td>1,400円</td>
<td>666円</td>
<td>504,876円</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>全工事費</td>
<td>286,896.49万円</td>
<td>197,173.59万円</td>
<td>154,097.41万円</td>
<td>373,677.84万円</td>
<td>390,307.19万円</td>
</tr>
<tr>
<td>190,000</td>
<td>凸 - 凸</td>
<td>246,255.66万円</td>
<td>165,452.54万円</td>
<td>145,166.49万円</td>
<td>360,163.77万円</td>
<td>390,615.28万円</td>
<td>1,610万円</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート単価</td>
<td>1,620円</td>
<td>1,430円</td>
<td>640円</td>
<td>504,876円</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>全工事費</td>
<td>246,255.66万円</td>
<td>165,452.54万円</td>
<td>145,166.49万円</td>
<td>360,163.77万円</td>
<td>390,615.28万円</td>
</tr>
<tr>
<td>160,000</td>
<td>凸 - 平行</td>
<td>299,936.54万円</td>
<td>181,732.44万円</td>
<td>171,332.18万円</td>
<td>357,740.49万円</td>
<td>360,615.28万円</td>
<td>2,090万円</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート単価</td>
<td>1,620円</td>
<td>1,430円</td>
<td>640円</td>
<td>504,876円</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>全工事費</td>
<td>299,936.54万円</td>
<td>181,732.44万円</td>
<td>171,332.18万円</td>
<td>357,740.49万円</td>
<td>360,615.28万円</td>
</tr>
<tr>
<td>140,000</td>
<td>凸 - L</td>
<td>134,903.30万円</td>
<td>134,903.30万円</td>
<td>134,903.30万円</td>
<td>229,181.49万円</td>
<td>239,645.51万円</td>
<td>1,940万円</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート単価</td>
<td>1,400円</td>
<td>1,400円</td>
<td>666円</td>
<td>504,876円</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>全工事費</td>
<td>134,903.30万円</td>
<td>134,903.30万円</td>
<td>134,903.30万円</td>
<td>229,181.49万円</td>
<td>239,645.51万円</td>
</tr>
<tr>
<td>120,000</td>
<td>平行 - L</td>
<td>116,576.60万円</td>
<td>77,255.40万円</td>
<td>77,255.40万円</td>
<td>167,775.32万円</td>
<td>167,775.32万円</td>
<td>1,780万円</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート単価</td>
<td>1,820円</td>
<td>1,820円</td>
<td>666円</td>
<td>504,876円</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>全工事費</td>
<td>116,576.60万円</td>
<td>77,255.40万円</td>
<td>77,255.40万円</td>
<td>167,775.32万円</td>
<td>167,775.32万円</td>
</tr>
<tr>
<td>90,000</td>
<td>平行 - 平行</td>
<td>86,462.49万円</td>
<td>90,423.51万円</td>
<td>90,423.51万円</td>
<td>169,912.65万円</td>
<td>169,912.65万円</td>
<td>1,780万円</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート単価</td>
<td>1,579円</td>
<td>1,579円</td>
<td>666円</td>
<td>504,876円</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>全工事費</td>
<td>86,462.49万円</td>
<td>90,423.51万円</td>
<td>90,423.51万円</td>
<td>169,912.65万円</td>
<td>169,912.65万円</td>
</tr>
<tr>
<td>70,000</td>
<td>L - L</td>
<td>86,435.53万円</td>
<td>77,216.47万円</td>
<td>77,216.47万円</td>
<td>189,251.68万円</td>
<td>189,251.68万円</td>
<td>3,090万円</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コンクリート単価</td>
<td>1,430円</td>
<td>1,430円</td>
<td>666円</td>
<td>504,876円</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>全工事費</td>
<td>86,435.53万円</td>
<td>77,216.47万円</td>
<td>77,216.47万円</td>
<td>189,251.68万円</td>
<td>189,251.68万円</td>
</tr>
</tbody>
</table>

表 - 3 各種コンクリート造り方のコンクリート単価（単位：円/㎥）

<table>
<thead>
<tr>
<th>コンクリート量 (㎥)</th>
<th>左右岸の平面形状</th>
<th>ケーブルクレーン使用状況</th>
<th>ケーブルクレーン組立固定式</th>
<th>ケーブルクレーン組立固定式</th>
<th>ケーブルクレーンH型固定式</th>
<th>ケーブルクレーンクライミング固定式</th>
<th>走行式門枠タイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000円</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000円</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,000円</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000円</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000円</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(バッチ重量) 9t 4.5t 6t 9t 4.5t 6t 9t 4.5t 6t 9t
自助走行輸送式 ケーブルクレーン工法 ケーブルクレーン工法 ケーブルクレーン工法 ケーブルクレーン工法 ケーブルクレーン工法 ケーブルクレーン工法 ケーブルクレーン工法 ケーブルクレーン工法 ケーブルクレーン工法
5. 考察

各工法の大さきな適用性を把握するため比較設計の作業を数件行い検討比較を行った結果、以下のことが明らかとなった。

実際に適用する場合には、現場の諸条件を考慮し、再検討する必要がある。

(1) 表 - 1 及び表 - 3 より軌条式ケーブルクレーン工法、H形軌条式ケーブルクレーン工法の優位性がうかがえる。

(2) クライミング定置式ケーブルクレーン工法は環境保全の点では他の工法の進捗を許さないが表 - 3 から明らかのようにコスト高となっている。

この種のスケーリングの機械損料が高い点である（表 - 4 参照）。増設の大きいダムでコンクリートコンクリートのシルバーリアの関係からクレーンを2基使用させるを得ないと、費用面の考慮すべきである。

従って小型除重式コンクリートダムのコンクリート運用にこの工法を適用する場合の条件は比較的大き形で長さ長の多い（最大150m程度）ダムであることがまず第 1 に必要と考えられる。

(3) 在来工法では経済的にコンクリートを運搬することが困難と考えられるダムサイトがあった。

p の現場のように導電長が長くダムサイトが阻仕事の場合はこれをあたる。

表 - 3 でダムを見ると軌条式ケーブルクレーン工法のコンクリート単価が他の工法に比較し断然安くとなっている。しかしながら軌条式ケーブルクレーンの最大スパンが447mとなっており、適用値とされている400mを50m近く越えており、コンクリート梁の断面が大き作業余裕が確保に悪くなると予想されるので選択する際には慎重に検討すべきである。

(4) 走行式門形ジオシリンクは等同を除いて除重指針式コンクリートダムのコンクリート運搬工法としては適切でない。

これはトレッセル等の設備費が非常に高くつくからである。（表 - 3、5参照）

以上の考察から更に次の点が考えられる。

社会の水需要の増大と従来建設不可能とされていた地点にまでダム建設を余儀無くされており、地形、地質共に困難なダムサイトが増大している。一方近年、各地で都市化が進むダムサイトは都市近郊化の圧迫が重いであり、用地上の制限が大きくとなって来ている。

従って今後、小型除重式コンクリートダムのダムサイトを取りまく自然の、社会的環境条
⑥ ゲームのコンクリート運搬打込設備統合表

<table>
<thead>
<tr>
<th>話元</th>
<th>内容</th>
<th>数量（台）</th>
<th>金額（¥）</th>
</tr>
</thead>
<tbody>
<tr>
<td>クレーン</td>
<td>9.01t</td>
<td>287,750</td>
<td>134,738</td>
</tr>
<tr>
<td>バッチャープラント</td>
<td>56 x 2台</td>
<td>49,900</td>
<td>5,257</td>
</tr>
<tr>
<td>運搬設備</td>
<td>4,915</td>
<td>9,908</td>
<td>1,046</td>
</tr>
<tr>
<td>鋼材打込</td>
<td>23.35t</td>
<td>9,322</td>
<td>1,951</td>
</tr>
<tr>
<td>置物</td>
<td>98.184</td>
<td>49.908</td>
<td>45.927</td>
</tr>
<tr>
<td>コンクリート</td>
<td>1,922</td>
<td>57,660</td>
<td>1,650</td>
</tr>
<tr>
<td>バッチャー</td>
<td>23.71</td>
<td>5,065</td>
<td>5,065</td>
</tr>
<tr>
<td>運搬設備</td>
<td>1,221</td>
<td>12,200</td>
<td>1,221</td>
</tr>
<tr>
<td>合計</td>
<td>555,165</td>
<td>32,070</td>
<td>46,398</td>
</tr>
</tbody>
</table>

⑦ ゲームのコンクリート運搬打込設備経済比較表

<table>
<thead>
<tr>
<th>内容</th>
<th>数量</th>
<th>金額（¥）</th>
</tr>
</thead>
<tbody>
<tr>
<td>クレーン</td>
<td>9.01t</td>
<td>287,750</td>
</tr>
<tr>
<td>バッチャープラント</td>
<td>56 x 2台</td>
<td>49,900</td>
</tr>
<tr>
<td>運搬設備</td>
<td>4,915</td>
<td>9,908</td>
</tr>
<tr>
<td>鋼材打込</td>
<td>23.35t</td>
<td>9,322</td>
</tr>
<tr>
<td>置物</td>
<td>98.184</td>
<td>49.908</td>
</tr>
<tr>
<td>コンクリート</td>
<td>1,922</td>
<td>57,660</td>
</tr>
<tr>
<td>バッチャー</td>
<td>23.71</td>
<td>5,065</td>
</tr>
<tr>
<td>運搬設備</td>
<td>1,221</td>
<td>12,200</td>
</tr>
<tr>
<td>合計</td>
<td>555,165</td>
<td>32,070</td>
</tr>
</tbody>
</table>
(6) ダムのコンクリート運搬打込設備経済比較表

<table>
<thead>
<tr>
<th>比較内容</th>
<th>打込み設備型式</th>
<th>数量</th>
<th>金額(円)</th>
<th>数量</th>
<th>金額(円)</th>
<th>数量</th>
<th>金額(円)</th>
<th>注記</th>
</tr>
</thead>
<tbody>
<tr>
<td>液力式コンクリートダム</td>
<td>重力式</td>
<td>9.0t×1基</td>
<td>119,830</td>
<td>10.0t×1基</td>
<td>125,030</td>
<td>116,450</td>
<td>98t×7基以上</td>
<td>10.0t×2基</td>
</tr>
<tr>
<td>備考</td>
<td>高さH＝64.5m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆頂標高 EL1525m</td>
<td>峰頂L＝200m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(7) ダムのコンクリート運搬打込設備経済比較表

<table>
<thead>
<tr>
<th>比較内容</th>
<th>打込み設備型式</th>
<th>数量</th>
<th>金額(円)</th>
<th>数量</th>
<th>金額(円)</th>
<th>数量</th>
<th>金額(円)</th>
<th>注記</th>
</tr>
</thead>
<tbody>
<tr>
<td>液力式コンクリートダム</td>
<td>重力式</td>
<td>9.0t×1基</td>
<td>119,830</td>
<td>10.0t×1基</td>
<td>125,030</td>
<td>116,450</td>
<td>98t×7基以上</td>
<td>10.0t×2基</td>
</tr>
<tr>
<td>備考</td>
<td>高さH＝64.5m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堆頂標高 EL1525m</td>
<td>峰頂L＝200m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第6節 ダムのコンクリート運搬打設設備経済比較表

<table>
<thead>
<tr>
<th>諸元</th>
<th>打込み設備形式</th>
<th>数量</th>
<th>金額 (円)</th>
<th>数量</th>
<th>金額 (円)</th>
<th>数量</th>
<th>金額 (円)</th>
<th>数量</th>
<th>金額 (円)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>601×1基</td>
<td>7,572</td>
<td>601×1基</td>
<td>8,073</td>
<td>601×75基</td>
<td>30,993</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28×3台</td>
<td>33,270</td>
<td>28×3台</td>
<td>35,370</td>
<td>28×3台</td>
<td>35,370</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8×1台</td>
<td>7,581</td>
<td>8×1台</td>
<td>8,142</td>
<td>8×1台</td>
<td>8,142</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>335t</td>
<td>13,400</td>
<td>63t</td>
<td>2,520</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17,855m³</td>
<td>17,855</td>
<td>30,925m³</td>
<td>30,925</td>
<td>9,045m³</td>
<td>7,045</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12t</td>
<td>12,800</td>
<td>160t</td>
<td>16,000</td>
<td>23×3台</td>
<td>7,400t</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95t</td>
<td>9,500</td>
<td>95t</td>
<td>9,500</td>
<td>95t</td>
<td>9,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>95t</td>
<td>3,920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>113,831</td>
<td>231,398</td>
<td>51,178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第7節 ダムのコンクリート運搬打設設備経済比較表

<table>
<thead>
<tr>
<th>諸元</th>
<th>打込み設備形式</th>
<th>数量</th>
<th>金額 (円)</th>
<th>数量</th>
<th>金額 (円)</th>
<th>数量</th>
<th>金額 (円)</th>
<th>数量</th>
<th>金額 (円)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>601×1基</td>
<td>7,572</td>
<td>601×1基</td>
<td>8,073</td>
<td>601×75基</td>
<td>30,993</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28×3台</td>
<td>33,270</td>
<td>28×3台</td>
<td>35,370</td>
<td>28×3台</td>
<td>35,370</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8×1台</td>
<td>7,581</td>
<td>8×1台</td>
<td>8,142</td>
<td>8×1台</td>
<td>8,142</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>335t</td>
<td>13,400</td>
<td>63t</td>
<td>2,520</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17,855m³</td>
<td>17,855</td>
<td>30,925m³</td>
<td>30,925</td>
<td>9,045m³</td>
<td>7,045</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12t</td>
<td>12,800</td>
<td>160t</td>
<td>16,000</td>
<td>23×3台</td>
<td>7,400t</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95t</td>
<td>9,500</td>
<td>95t</td>
<td>9,500</td>
<td>95t</td>
<td>9,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>95t</td>
<td>3,920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>113,831</td>
<td>231,398</td>
<td>51,178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第2節 ダムのコンクリート運搬打込み設備設置経済比較表

<table>
<thead>
<tr>
<th>諸元</th>
<th>打込み設備形式</th>
<th>比較内容</th>
<th>数量</th>
<th>価額</th>
<th>注記</th>
</tr>
</thead>
<tbody>
<tr>
<td>垂直式コンクリートダム</td>
<td>垂直式荷重式</td>
<td>荷重</td>
<td>60.1t</td>
<td>55.7</td>
<td>60.1t</td>
</tr>
<tr>
<td>防波高H=4.33m</td>
<td>垂直式荷重式</td>
<td>60.1t</td>
<td>59.6</td>
<td>60.1t</td>
<td></td>
</tr>
<tr>
<td>防波板厚EL=620m</td>
<td>垂直式荷重式</td>
<td>28.3</td>
<td>25.9</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>防波板長L=160m</td>
<td>垂直式荷重式</td>
<td>60.1t</td>
<td>60.1t</td>
<td>60.1t</td>
<td></td>
</tr>
<tr>
<td>左側面の平板型</td>
<td>60.1t</td>
<td>60.1t</td>
<td>60.1t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>谷の曲断形</td>
<td>60.1t</td>
<td>60.1t</td>
<td>60.1t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>176,883</td>
<td>153,745</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第3節 ダムのコンクリート運搬打込み設置経済比較表

<table>
<thead>
<tr>
<th>諸元</th>
<th>打込み設備形式</th>
<th>比較内容</th>
<th>数量</th>
<th>価額</th>
<th>注記</th>
</tr>
</thead>
<tbody>
<tr>
<td>垂直式コンクリートダム</td>
<td>垂直式荷重式</td>
<td>荷重</td>
<td>45.1</td>
<td>55.7</td>
<td>45.1</td>
</tr>
<tr>
<td>防波高H=4.00m</td>
<td>垂直式荷重式</td>
<td>45.1</td>
<td>52.3</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td>防波板厚EL=1440m</td>
<td>垂直式荷重式</td>
<td>28.3</td>
<td>24.4</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>防波板長L=171m</td>
<td>垂直式荷重式</td>
<td>57.8</td>
<td>23.1</td>
<td>57.8</td>
<td></td>
</tr>
<tr>
<td>左側面の平板型</td>
<td>31.6</td>
<td>31.6</td>
<td>31.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>谷の曲断形</td>
<td>1.03</td>
<td>3.10</td>
<td>1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>163,345</td>
<td>154,993</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注記

1. クレーンの設置は、設備の選定方法により変化します。
2. 工期の比較は、設備の設置方法により変化します。
3. 自然環境の影響は、設備の設置方法により変化します。
4. 操作性の評価は、設備の選定方法により変化します。
5. 総合評価は、設備の選定方法により変化します。

打設工期

- 第2節: 14ヶ月
- 第3節: 15ヶ月
- 第4節: 15ヶ月

最適

- 梯 | 禁
- やや不適 | 不適

外

- 梯 | 禁
- 禁 | 禁
- やや不適 | 不適
- 不適 | 不適
图示了某地区的地形和塔式起重机的布置计划平面图。图中标注了多个坐标点和标高信息，如Y点171m、X点56m等。图例中还包括了20x2类型的起重机。比例尺为1:500。
小規模重力式コンクリートダム合理化施工

昭和55年8月1日発行

監修 建設省河川局第発講
発行 (株)国土開発技術研究所センター
〒105 東京都港区港南2-8-10
（第13新ビル）
Tel (03) 603-0391

印刷 （株）建工株式会社
Tel (03) 263-5579

落丁本、乱丁本は著者承認です。宛効5,500円